Baseline Editior2 TR 24772 WG 23/N @10

ISO/IEC JTC 1/22N OOOO

Date:2012-06-28
ISO/IEC TR 24772
Edition 2
ISO/IEC JTC 1/SC 22/WG 23

Secretariat: ANSI

Information Technology Programming Languages Guidance to Avoiding
Vulnerabilities in Programming Languages through Language 8Selaatl Use

Elément introductit Elément principat Partien: Titre de la partie

Warning

This document is not an ISOdntational Standard. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relgatrnt rights of which they
are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage:20) developmentstage
Document language: E

© ISGIEC2012 ¢ Al rights reserved i

WG 23/N @10 Baseline Edition 2 TR 24772

Gopyright notice

This ISO document is a working draft or committee draft and is copypigiécted by ISO. While the
reproduction of working drafts or committee drafts imyform for use by participants in the ISO
standards development process is permitted without prior permission from 1SO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
aK2gy o0St2¢ 2NJ G2 L{hQa YSYOSNIoO62R& Ay (G(KS 02

ISO copyright office

Case postale 56, €211 Geneva@
Tel. +41 2274901 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISTIEC2012 ¢ All rights reserve

as
dzy (i NE

Baseline Editiol2 TR 24772 WG 23/N @10
Contents Page
011 o PSSP UUSU USRS XV
10T [1 Tox 1o o RSP PPP XVi
1. 0 070 01 17
2. N0 g P Yo =] 1= £ ol 17
3. Terms and definitions, symbols and CONVENLIONS............uuuiiiiiiiiiiii e 17
3.1 Terms and defiNItIONS. eeeeeeeeees 17
3.2 SYMDOIS N0 CONVENTIONS........iiiiiiiiiiie et e et e e e e e e e e e e e mas bbb e e e e e s 21
4, R F Y [O] g o1 =T o) =T 22
4.1 Purpose of this Technal REPOI...........uuuiiiii e e e e e 22
4.2 1 (=T a0 [T o I 8 T L= o o =SSP 22
4.3 HOW t0 USE ThiS DOCUMEIIL........uiiiiiiiiieeeeeeiier ettt e ettt e et e e e e e e e r e e e e e e e s nsmnnsree s 23
5 VUINEIADIIILY ISSUES......ciieeiiiici e e e e e e e e et e e e e e e e e e e et mr e e e e eetara e eeees 24
5.1 PrediCtable @XECULION.u i et e e e e e e e e e e e e e aa e e e e e e e e e e e e eeereereeeeeeees 24
5.2 Sources of unpredictability in language SpecificatiQn..............uuvvviiiiiiii e 25
5.2.1 Incomplete or evolving SPECIfICALION..........uuiiii i e e e e e e e e e eeeees 25
A A U L (o (= 10 T=To I o T=T o= 1Y/ o 11 SRR 26
5.2.3 UNSPECIfied DENAVIOUL........vviiiiiiiiiieiee e e s e e e e e e e e e e e s s e e e e e e e aaaeeees 26
5.2.4 Implementationdefined DENAVIOUL..............oooiiiiiiiiiiiei e 26
LA T B 11 oW] B (== (01T 26
5.2.6 Inadequate language SUPPOLL.........ooiiiiiiiiiiieee et e eeeas 26
5.3 Sources of unpredictability in [aNQUAGE USAGE.........ooiiiiiiiiiiiiiiieiee e 26
5.3.1 Porting and iNtErOPEIALION.oiiiiiiiiii e ime ettt e et e e e e e e s s e e e e e e e e s ame e nnneees 26
5.3.2 Compiler Selection and USAQE...........ociiiiiiiiiiiii e e aeeeas 27
6. Programming Language VUINerabilities.............oouiiiiiiimiiiieee e 27
6.1 LT 1= - 1 27
6.2 L= 13 11 8T] (o o | SRR 27
6.3 TyPe SYSIEM [THN ..ot e e e e e e e e e s me s e e e e e e e e anes 28
6.4 Bit Representations [STRY.......ccooii i ee e nr e 30
6.5 Floatingpoint Arithmetic [PLF] ... eem s 32
6.6 ENUMErator ISSUES [CCBL.....oiiiiiiiiiiiiiie ittt e et e e e e emr e e e e e e e e 34
6.7 Numeric Conversion Errors [FLC].....ooooii oo 36
6.8 String Termination [CIMY ...t e e e e e e e s ma e eees 38
6.9 Buffer Boundary Violation (Buffer Overflow) [HCB].........ccoooiiiiiiiiiiieiiieeeeeeeiieeee e 39
6.10 Unchecked Array INAeXiNG [XYZ].....uuuuimiiiiiiiiiiiiiiimre s eee e sse s s es s s s s ssime e e e e e e e e e e e e e aaaaeaaeaaaaeeeems 41
6.11 Unchecked Array COPYING [XYWN]. ... e e e iiieiiiinieeeiimea s aes e eee s ae s same e e e e e e e e e e e e e e aaaaaeeaeeeeeeans 43
6.12 Pointer Casting and Pointer Type Changes [HEC].......cooiiiiiiiiiiie e 44
6.13 Pointer Arithmetic [RVG]. ..o 45

© ISTIEC2012 ¢ All rights reserved ili

WG 23/N @10 Baseline Edition 2 TR 24772

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57

Null Pointer DereferenCe [XYH] it e rmr e 46
Dangling Reference to Heap [XYK] ... AT
Arithmetic Wrap-around Error [FIF] ... A9
Using Shift Operations for Multiplication and Division [PIK].......ccccoooiiiiiiiiiiiiie e 51
SigN EXIENSION EITOT [XZI]..eeeieeiiiiiee ettt e e e e ame e 52
Choice of Clear NameS [INALL......oo it e et e e e e e es 53
[T Vo IS (o] (= AT,) 55
Unused Variable [YZS]..... ..ot e e 56
Identifier Name REUSE [YOW... ...t ieitiie ettt ame et e e e e e e s e enane e 57
NamMESPACE ISSUES [BdL....cuvuuiiiie e e e e e e e et s s e e e e e e e e e e e teana e s emreernn e e eeeas 59
Initialization of VariablesS [LAV]........oo e 61
Operator Precedence/Order of Evaluation [JCW].......ccuuuiiiiiiiiiiiiin e 63
Sideeffects and Order of Evaluation [SAMI.......cooiiiii e e 64
Likely Incorrect EXPression [KOAL ettt 66
Dead and Deactivated Code PXY.QJ ittt e et rmr s 68
Switch Statements and Static Analysis [CLL].....coovuiiiiiii e reer e 70
Demarcation of Control FIOWHOUJ]........ccooiiiiiiiiiiiii et 71
Loop Control Variables [TEX]........ccoooiiiiiii e 73
(@ o) Yot] a TSI =g o] gl 2 07 | TR 74
Structured Programming [EWD].......oooiiiiiiie et m e 75
Passing Parameters and Return Values [CSJ]........ccooiiiiiiiiiiiciiieeeeeeesee e ee e 76
Dangling References tBtack Frames [DCM].........ooviiiiiiiiiiiiiii e 79
Subprogram Signature MismatCh [OT.R]......couiiiiiiiiii e 81
RECUISION [GDL]cciiiiiiiiiiiiiiiiiiii e e mr e e e e e e e e e e e e e aaaaaeaaaeas 82
Ignored Error Status and Unhandled Exceptions [OY.B]........cccvrviiiiiiiiiiceeiiiiin e 84
Termination Strategy [REU].........ouiiiiiei e 86
Type-breaking Reinterpretation of Data [AMV].......oveiiiiiiiiiieieeeeeeecme e 88
YT o ToT Y =T | S 2 1 R 90
Templates and GeneriCS [SYM] ..ot ne 91
INNEMIANCE [RIP] ... e e e e e e e e e e e e aaeaaaeaaaaeas 93
EXtra INtrNSICS [LRMY]....uueiii s e et e e e eme e e s e e e e e e e e eat e e e e e e amrennnseeeeeseennns 95
Argument Passing toilirary FUNCHONS [TRJ]......ccuviiiiiiiieiiiiimiiie e 96
Inter-language Calling [DJS].....ccouuiiiiiiii e e e e e et er e e e e e e et e e e e e e e e eeesenameeeeeenes 97
Dynamicallylinked Code and Sethodifying Code [NYY].......oouiiiiiiiiiieieeeeeeeeeeee 99
Library Signature [NSQ)......ccooiiiiii i —————— 100
Unanticipated Exceptions from Library Routines [HIM]........coouviiiiiiiiiiiciii e 101
Pre-processor DireCtivesS [NIMP........oo ettt me e 103
Suppression of Languagiefined Runtime Checking [MXB]........uuuveriiiiiieeiieriiieiernans 104
Provision of Inherently Unsafe Operations [SKL]........ccooviiiiiiiiiiiiim i eeee e eeens 105
Obscure Language Features [BRS]........cccuuuiiiiiiieiie it 106
Unspecified BENaVIOUBQRF]........cooiiiiiiiiiiie e me e 108
Undefined Behaviour [EWE]..........uii it s e e e e e e et e eeees 109
Implementation-defined Behaviour [FABJ..........coouiiiiiiiiii e 111
Deprecated Language Features [MEM]...........ooooiiiiiiii et eeev e 112

© ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N @10

7. FaY o] o] Tox= ViToT g RV AU | Lo =T =V o]] 11T USSR 114
7.1 (7= 1= -1 S PPPPPPPPRUPR 114
7.2 LI 0011 0 Te] (o]0) T PP PPT O POPPPPPPPPPRN 114
7.3 Unspecified Functionality [BVQ].......ccooooiiiiiiiii e 114
7.4 Distinguished Values in Data TYPes [KLK]......cooiiiiiiiiieee e 115
7.5 Adherence to Least Privilege [XYN]. ..o 117
7.6 Privilege SandboX ISSUES [XYQ]...uuuiiiii it e e e e e e s e e s e e e e e e e eenarnn e e e emees 117
7.7 Executing or Loading Untrusted Code [XY.S].......ouiiiiiiiiiiiiiimiiiee e 119
7.8 MEMOTY LOCKING [XZX]...eeeeeiiiiiittetee ettt enr e e e e e et e e e e e e e e ame e 120
7.9 Resource EXhauStion [XZR].......coo i ess s e ann s 121
7.10 Unrestricted File Upload [CBE].......ccoiiiiiiiiiiiee et 122
7.11 ReSOUIrCE NAMES [HTS]...oiiiiiiiiiiiiiii ettt e e e e e e e e e e s ame e s eee s 124
0 2 1] 1= 1 o] o T 8) Y PP 125
7.13 CroSsSite SCHPLNG PXY T ittt e e imr e e e e e e eeemr e e e e e e e aan 128
7.14 UnquotedSearch Path or Element [XZQJ......coouiiiiiiiiiiiiieeeeee et 131
7.15 Improperly Verified Signature [XZR].......ocooiiiiiiiiiiie it e e e e eeneeas 131
7.16 Discrepancy Information Leak [XZL........coooiiiiiiiiiiiiimee e e 132
7.17 Sensitive Information Uncleared Before Use [XZK].........uvveiiiiiiieiiiviciiee e 133
7.18 Path Traversal [EWR]... ..ot e e emtte s e e e e e e e e ee b e s e e e e s smrnn s eeeaeeeenne 134
7.19 Missing Required CryptographiC Step [XZS].........uuuiiiieiiiiiimiiiiiee e 136
7.20 Insufficiently Protected Credentials [XYM]....ccooiooiiiiiiiiiici i 137
7.21 Missing or Inconsistent Access CoNtrol [XZN]....coooo oo e 137
7.22 Authentication LOgIiC Error [XZQY........ouuiiiiiiiiiiiiii ettt m e 138
7.23 Hardcoded PasswWord [XYR]... ... iiiiiiiiiieeesieisceseees s me aaaeeeeameaaees 140
8. NEW VUINEIADIITIES.oii i e e rme e e e e e e e aaaaaaaaans 141
8.1 (7= 1= -1 PP PPPPPRUPR 141
8.2 BLIC= 14T T0] oo PSP P U UTR 141
8.3 (Ofo] (o101 (=10 [y Yol AVox 1)Y= 11 To) o I [@7 AN 141
8.4 Concurrency; Directed termination [CGT].....uuuiiii it er e 143
8.5 Concurrent Data ACCESS [CGX]..uuuuuuiiimr et e 144
8.6 Concurrencyc Premature Termination [CGS].....ccoiiiiiiiiiiiiiii e e emraa e 146
8.7 Protocol LOCK EEDIS [CGMI....oiiiiiiiiiiieiee ettt e e e e e 148
8.8 Inadequately Secure Communication of Shared Resources [CGY]........ooovvviriiiiiicrrvvennnnnnnn. 150
AnnexA (informative) Vulnerability TaXONOmMYANA LiSt..........oueiiiiiiiiiiiiiiiiiic e 152
NN R € 1= =T - | PP PPPUPRTR 152
A.2 Outline of Programming Language Vulnerabilities..............ccceieiiiiiiciiiii e, 152
A.3 Outline of Application VulnerabilitieS............oooviiiiiiiiiii e 154
A4 VUINErability LiSt.......ccoo oo e 154
AnnexB (nformative) LanguageSpecific Vulnerability Template..........cooooieeiiiiiiiiie 157
AnnexC (nformative) Vulnerability descriptions for the language Ada.............ccccveeeiiiiiiciiiiiiieen 159
C.1 Identification of standards and associated documentation.............cccccouvvvviimiiiieeieee e 159
C.2 General terminology @and CONCEPLS.uuiiiieeii it et e e e e e e e e e e e e e e e e e e eeeennaaas 159

© ISTIEC2012 ¢ All rights reserved \%

WG 23/N @10 Baseline Edition 2 TR 24772

C3
C4
C5
C.o6
C.7
C.8
C9
C.10
cl1
C.12
C.13
C.14
C.15
C.16
C.17
C.18
C.19
C.20
c.z21
C.22
C.23
C.24
C.25
C.26
C.27
C.28
C.29
C.30
C31
C.32
C.33
C.34
C.3
C.36
C.37
C.38
C.39
C.40
c.41
C.42
C.43
C.44
C.45
C.46

Vi

TYPE SYSEM [THN]. ..ottt rmr e e e e e e e e e e e e e e e aaaeaaaeeaeeeamtaeeeeeeeeeeerereeees 165
Bit Representation [STR]........oo it e e e e me s 165
Floatingpoint ArithmetiC [PLF]........ooui e 166
Enumerator ISSUES [CCB]... ..ot 166
Numeric Conversion Errors [FLC] ... it e e 167
String Termination [CIM].......coi it e e e e e e e ame e e e e e aan 167
Buffer Boundary Violation (Buffer Overflow) [HCB].........oooiiiiii e, 168
Unchecked Array INAeXing [XY.Z].....ooooiiiiiiiiii et e e e 168
Unchecked Array Copying XY VW] ..ottt eme e e e e e e e 168
Pointer Casting and Pointer Type Changes [HEC].......ccooo i 168
Pointer ArithmetiC [R/G]......ooi e e e e eas 169
Null Pointer Dereference PXYHIo oot 169
Dangling Reference to Heap [XY K] it s e e e e e e ennana s 169
Arithmetic Wrap-around Error [FIF] ... 169
Using Shift Operations for Multiplication and Division [PIK]..........c.eeviiiiiimiiieeeeeeeee 170
Y To L e (=T 5o I =1 (o 1,74 | 170
Choice of Clear NamMeS [NALL......ooi it e e 170
[D1CT= (o IRS) (o] =3 AT D) P 171
(0L U =To A= T T= o] L= | 74 Y RS 171
Identifier Name REUSE [YOW.... .ottt ame s e e e e emee s 171
Namespae I1SSUES [BIL].....ooooiiiiiii e —————- 172
Initialization of Variables [LAV]......coo e emie s e e e e e e e e eanas 172
Operator Precedence/Order of Evaluation [JCW]........ccuiiiiiiiieiiiiien e 173
Sideeffects and Order of Evaluation [SAM]........ccooooiiiiiiiiii e, 173
Likely Incorrect EXPression [KOA]o i emre s e e e s e e e anae e 174
Dead and Deactivated Code [XY.QJo ittt 175
Switch Statements and Static AnalysiS [CLL]........iiiiiiiiiiiiiiie e, 175
Demarcaton of Control FIOW [EOJ].......uiiii i e et v e e e e e e e enneennans 176
Loop Control Variables [TEX].........uuiiiiiiiiiiiiimiiie et e e enre e 176
OFff-DY-0NE EFTOr [XZH] .. uuiiiiiiiiiiiiiiiiii s e i e amreeaeeeeeeeeees 176
Structured Programming [EWD].......coooiiiiiii e mr e e e e e e e e eenen 177
Passing Parameters and Return Values [CSJ].........uuuiiiiiiiiiiiiiiee e 177
Dangling References to Stack Frames [DCMI........coovriiiiiiii i 177
Subprogram Signature MismatCh [OT.RY......ccoiiiiiiiiiii e 178
RECUISION [GDL]ceiiiiiiiiiiiiiiiiiiie e rme e e e e e e e e e e e e e aaaaaaaeeas 179
Ignored Error Status and Unhandled Exceptions [OYB].......ccoooviiiiiiiiiiiciiiiiin e 179
Termination Strategy [REU].......coooiii e 180
Typebreaking Reinterpretation of Data [AMV].......ooooviiiiiiiiiiiiiic e 180
LT g o Y == |G 2 1 181
Templates and GeNEIS [SYM]....coo i e e e a e e e anas 181
T g =T = VTt T | T 182
= W 1T T 0= 0 U 182
Argument Passing to Library FUNCIONS [TRJ].........uuiiiiiiiiiiimiiiie e 182
Inter-language Calling [DJIS].......ccovviiiiiiiiiii e e 183

© ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N @10

C.47 Dynamicallylinked Codeand Selfimodifying Code [NYY]....oovviiiiiiiiiiiiiiiieeeveeiiiieieienes 183
C.48 Library Signature [NSQY.......ccouiriiiiiieeiiiimi et e e e e e e e m e 183
C.49 Unanticipated Exceptions from Library Routines [HIW]...........coooeiiiiiiiimiiiiiieeeeeeeiiiieeeen 183
C.50 PreProcessor Directives [NMRB]........ooooiiiiiiii e 184
C.51 Suppression of Languaggefined Runtime Checking [MXB]..........ccooviiiiiiiiiiiimie e 184
C.52 Provision of Inherently Unsafe Operations [SKL].........coouiiiiiiiiiimieee e 184
C.53 Obscure Language Features [BRS] ... ccooi oot e et emreasn s e e e e e e e e anaa s 185
C.54 Unspecified Behaviour [BQFE].......ooiiii ittt m e 185
C.55 Undefined Behaviour [EWE]..........uuiiiiiiiiiiieii et anre e 186
C.56 Implementation-Defined Behaviour [FABJ ..o vsies s e e e e 187
C.57 Deprecated Language Features [MEM]..........c.uuuiiiiiiiiiiiieee e 188
C.58 Implications for StandardiZatiOn...............coueiiiiiiiimiiie e 188
AnnexD (nformative) Vulnerability descriptions for the language.C...............c.ccciiiriieiiiiiviveeeeeee, 189
D.1 Identification of standards and associated dOCUMENLS.ccoiiiuiiiiiiiiimieee e e e 189
D.2 General terminology and CONCEPLIS.uviiiiiiiiiiiiiiit e e e e e e et e e e e e e e e e e 189
D20 T Y/ o= IS 21 (=T o T | P 192
D.4 Bit Representations [STR].......cccuiiiiiiiiiiiiiimr it e s 193
D.5 Floatingpoint ArithmMEtiC [PLF]...coovrriiiiieeeeeeeeeee e e 194
D.6 ENUMErator ISSUES [CCBJ.....coiiiiiiie et e e ter e e e e e et s e e e e e e e eerarame e e e e eeenees 195
D.7 Numeric Conversion Errors [FLC].....ooii it enr e e e e e 196
D.8 String Termination [CIMY]........uuuuiiiiiiiiieieies e rmr e amraeeeeaees 198
D.9 Buffer Boundary Violation (Buffer OVEDW) [HCB]........coiiiiiiiiiiiiici e emeees 198
D.10 Unchecked Array INAeXiNg [XYZ]......cooiiiiiiiiiiee ittt e e e 200
D.11 Unchecked Array Copying [XYW]... ..ot e e 200
D.12 Pointer Casting and Pointer Type Changes [HEC]........ooooiiiiii e, 201
D.13 Pointer ArtNMETIC [RVG]...cciiiiiiiiiiiiiiie ettt e e m s 201
D.14 Null Pointer DereferenCe [XYH].....oo e e 202
D.15 Dangling Reference to Heap [XYK]. ..o etme e e e e e e e eeneees 203
D.16 Arithmetic Wrap-around Error [FIE].........ooo et 204
D.17 Using Shift Operations for Multiplication and Division [PLK]............ccevviiiiiiiiiiciiiiiiinnnns 205
DI S T o T o N T (=] g T 0] T = (0 g 074 | 205
D.19 Choice of Clear Names [NAI] ... e e e e e s ame e 205
[22 O B B T Vo IR (o T (=N A7 TSP 206
D.21 Unused Variable [YZS] .. .ottt 206
D.22 Identifier Name REUSE [YOW]......uuuuiiiiiiiiiiiiiiiiiiieie s s s s e e s s e s s e s s s s s s s s s s s ama e e e e e e e aaaaaaaaaaaaaaaaaaaeaaneens 207
D.23 Namespace ISSUES [BIL].....cooiiiiiiiii e er e e e s e e e e e e e e eaer e e e e e e eennee 207
D.24 Initialization of VariableS [LAV]......oo et m e e e e a e 208
D.25 Operator Precedence/Order of Evaluation [JCW]..........ooooiiiiiiiiii i eereeee 208
D.26 Sideeffects and Orde of Evaluation [SAM].......coouiiiiiii i 208
D.27 Likely Incorrect EXPression [KOA] ... i ettt e e e e e 209
D.28 Dead and Deactivated Code [XYQ]....cooioiiiiiiiii i 211
D.29 Switch Statements and Static AnalysisS [CLL].......uuciiiiiiiiiiie e 211
D.30 Demarcation of Control FIOW [EQUJ].......ccuiiiiiiiiiiiiiiirieeee e m e 212

© ISTIEC2012 ¢ All rights reserved Vii

WG 23/N @10 Baseline Edition 2 TR 24772

D.31 Loop Control Variables [TEX]........ccuiiiiiiiiiiiiiie et es s me e 213
D.32 Off-DY-0N€ EFTOr [XZH]...ceeieiiiiiiiiiiiieeeee e n s a e e e e e e e e e e aeeaens 214
D.33 Structured Programming [EWD].........coeiiiiiiiiiiiii ettt e e en 215
D.34 Passing Parameters and Return Values [CSJ]......uuuuuiriiriiiiiieieiinnmr e 215
D.35 Dangling References to Stack Frames [DCM]......coooiiiiiiiiiiiiimiieeeeee e 216
D.36 Subprogram Signature MismatCh [OTRI...........coiiiiiiiiiiimii e 216
R I =Tl U]] o o [PR 217
D.38 Ignored Error Statugnd Unhandled EXceptions [OYBJ..........ccuuviiiiiiiiiiimiiieieeee e 217
D.39 Termination Strategy [REU]..........ouiiiiiiiiiie e 218
D.40 Typebreaking Reinterpretation of Data [AMV]........ouioiiiiiiiiiiicmee e e e 219
D.A1 MeMOIY LEAK [XY L] . eiiiiiiiiiiiiiiii ettt e e e e e e e e e e ame e aeeeas 219
D.42 Templates and GeneriCS [SYMY]......c.uuuiiiiiiiiiiiiimi e e e e anbeanes 220
[N o g =T) = g o T | 41 220
D.44 EXtra INtNSICS [LRMJ.....eiiiiiiieieii et et e e eeme e e e e e 220
D.45 Argument Passing to Library FUNCHONS [TRJ]......uuiiiiiiiiiiiiiieeieeee e 220
D.46 Inter-language Calling [DJS].....cooouuiiiiiii i e e e e e e e e e e e e e e aerane e e e 220
D.47 Dynamicallylinked Code and Sethodifying Code [NY Y] ... 221
D.48 Library Signature [NSQJ......cooiiiiiiiiiiiiie e e e e e e e aaaas 221
D.49 Unanticipated Exceptions from Library Routines [HIW].........ccooriiiiiinii i 222
D.50 Pre-processor DireCtiveS [NMPY..........uui i iiiiiiiiiiimi et e e e e 222
D.51 Suppression of Languagefined Runtime Checking [MXB]..........uuuiiiiiriiiiiiieiiieiicciinans 223
D.52 Provision of Inherently Unsaf@perations [SKL].........ccooiiiiiiiiiiiiii e 223
D.53 Obscure Language Features [BRS]........oooiiiiiiiiiei i 223
D.54 Unspecified Behaviour [BQE]........cooiiiiiiiiiiiiiic e e me e 224
D.55 Undefined BEhavioUur [EWE]......ccoo e tmr e e e e e annr e 224
D.56 Implementation-defined Behaviour [FABJ.........cccuiiiiiiiiiier e 225
D.57 Deprecated Language Features [MEM].........couriiiiiiiiiiiiiicimr e 226
D.58 Implications for StandardiZation..............couveuiiiiin s e e e emr e e e e e e e e e e e s 226
AnnexE (nformative) Vulnerability descriptions fothe language Python............ccccccooiiiiiimniiiiennen. 229
E.l Identification of standards and associated dOCUMENTS..........ccuvvvieiiieeiice e 229
E.2 GeneralTerminology and CONCEPLS.......ccviiiiiiiiiiiie 229
E.3 Type SYSeM [IHN]....ooiiiiiiiiiii et e e et e e e e ame e e e e rn e e e as 234
E.4 Bit Representations [STR]......ccuiiiiiiii e e et tter e e e e e e et s e e e e e e eeerarameeeeeennes 236
E.5 Floatingpoint ArthmMEtic [PLF].......... it e 236
E.6 EnumMerator ISSUES [CCB].. ...ttt eam e 237
E.7 Numeric Conversion Errors [FLC] . ..ot eemra e e e e e e e e e e e e e e s 238
E.8 String Termination [CIMI........ooii it e e e e e e e e ame e e e e 238
E.9 Buffer Boundary Violation [HCB]...........oooiiiiiiiiiiii et e 238
E.10 Unche&ed Array INAeXiNg [XYZ].....oui i e e et eemer s e e e e e e e e e e e e e e s 239
E.11 Unchecked Array COopYing [XYWV]o i oottt m e e e 239
E.12 Pointer Casting and Pointer Type Changes [HEC].....ccoooiioiiiiiiiiii e, 239
E.13 Pointer ArithmetiC [RVG]......coouiiiiiii et e et s s e e e e e e e eeaeenme e e e eeennes 239
E.14 Null Pointer Dereference [XYH]o 239
viii © ISAIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N @10

E.15 Dangling Reference to Heap [XYK]......oooooiiiiiiii e 239
E.16 Arithmetic Wrap-around Error [FIR]...... ... i a e e e e e e e aaaaaa e 239
E.17 Using Shift Operations for Muiplication and DivisSion [PIK].........ccccuuiiiiiiiiiiiiiiiieeeee e 240
E.18 Sign EXENSION ErTOr [XZJ....uveiiieiiiieiiieiiesttie e me e s e smnaeeeeaees 240
E.19 Choice of Clear Names [NAI] ... e e e ame e 240
E.20 Dead Store [WXQY.....coi ittt e e e e e e e e e e 242
E.21 Unused Variable [YZS].. ..ottt e e e e e e e e e e e e et ne e e e e e e rraaaa 243
E.22 Identifier Name REUSEYOW].. ... ittt e e e e e enee e 243
E.23 NamMeSPACE ISSUES [BIL].....oeiiiiiiiiiiiiiiii ittt ime e e e e e e s eemr e e e e e e e e e aan 245
E.24 Initialization of Variables [LAV] ... e e e e e e e e s 247
E.25 Operator Precedence/Order of Evaluation [JCWI............oeiiiiiiiiiiiimiiiieeceeee e 248
E.26 Sideeffects and Order of Evaluation [SAM].........oocuuiiiiiiiieiiiieiiie e 249
E27 Likely Incorrect EXpression [KOA]. ...t e e e tmr e e e e e e e e s e e e e e eeeenes 250
E.28 Dead and Deactivated Code [XYQ].... . uiiiiiiiiiiiiiiiiinee e e e e 251
E.29 Switch Statements and Static ANalySIDG........cooiiiiiiiiiiiie i 251
E.30 Demarcation of Control FIOW [EQUJ]........ccuuiiiiiiiiiiiiiiir e e e eeettme e e e ee e s e e e e eeeeees 252
E.31 Loop Control VariablesS [TEX].......oouiuiriiiiieeeiiie ettt e e e e e e e e s ame s 253
E.32 Off-by-0ne Error [XZH].......ccoooiiiiii e 254
E.33 Structured Programming [EWD]........uuiii oo e e et e e e e e e e e e e aannnn e 254
E.34 Passing Parameters and RetuValues [CSJ]......cooiiiiiiiiiiieiiiiie e 255
E.35 Dangling References to Stack Frames [DCM].........ccooooiiiiiiiiiice, 256
E.36 Subprogram Signature MismatCh [OTR].....cciiiiiiiiiiiiii e emrr e e e e e e aenes 257
E.37 RECUISION [GDL]....etiiiiiiiiiiiiiitee ettt et e e e et e e e s et e e e e e e s eeaaeeas 257
E.38 Ignored Error Status and Unhandled Exceptions [OQY.B]........covviviiiiiieiiiciiiiiniiieiiiiiineeninnnns 257
E.39 Termination Strategy [REU].........ccoiiiiiiiiii e esrns e e e e e e e s emra s 258
E.40 Typebreaking Reinterpretation of Data [AMV]........ccooiiiiiiiiiiiiiii e 258
E.4L MeMOIY LEAK [XY L] ittt et e s s e e s e e e s s e e s s e e s s e nama e e e aaaaaaaaaaeaans 258
E.42 Templates and GeneriCS [SYMI] ...t e e e e e et s smr e s s e e e e e e e eeeaann e e e emees 259
E.43 INNEMTANCE [RIP....eiiiiiiiiiiie ettt e e e s e e e e e e s ame s et e e e e e e e e ens 259
E44 Extra IntrinSiCS [LRM].....cooiiiiiii ettt e me e e e e e e e e as 259
E.45 Argument Passing to Library FUNCtioNS [TRJI].....couiiiiiii e eeeeer e 260
E.46 Inter-language Calling [DJIS]... . uuuetieiiiiiiiiiii ittt rime e e et ene e e as 260
E.47 Dynamicallylinked Code and Selhodifying Code [NYY].....cooriiiiiiie e, 261
E.48 Library Signature [NSQY]..... .. eeiiioiiiiiiie ettt e e ime s e e e e e e remr e e e e e e e 261
E.49 Unanticipated Exceptions from Library Routines [HIW]............cooooviiiiiiiieiiiiiieeeeeeeeeeee 262
E.50 Preprocessor DIreCtives [NMPB]........u it e e e e e e e e anna e 262
E.51 Suppression of Languag#efined Runtime Checking [MXB]........ccccoviiiiiiiiiiiiiim e 262
E.52 Provision of Inherently Unsafe Operations [SKL]..........coooviiiiiiiiiiiciiiniiieeeeeeesvs e 262
E.53 Obscure Language Features [BRS].........cccoiiiiiiiiiiiiien it e e e e eeneees 263
E.54 Unspecified Behaviour [BQR]........ooi ittt rme s 265
E.55 Undefined Behaviour [EWE]........ccoooiiiiiii e 266
E.56 Implementationcdefined Behaviour [FAB]..........uiiiii it 267
E.57 Deprecated Language Features [MEMY]..........ccouiiiiiiiiiimiiiee et m e 267

© ISTIEC2012¢ All rights reserved iX

WG 23/N @10 Baseline Edition 2 TR 24772

AnnexF {nformative) Vulnerability descriptions for the language Ruhy....................oo i, 269
F.1 Identification of standards and associated dOCUMENTS...........uuuuueieeriiimimaiaaieae e 269
F.2 General Terminology and CONCEALSuuiiiieiiiiiitii it eee et e e e e ettt e e e e e e sne b e e e e e e aaneeees 269
F.3 TYPE SYSIEM [IHN] ..ottt r e rmr e e e e e e e e e e e e e e e e aaeeaeeeeeeeameaeeeeeeseeeeeeeeeees 270
F.4 Bit Representations [STR]..... .. i ittt e e e st enr e e aeeeas 271
F.5 Floatingpoint ArithmetiC [PLF]........ooo e 272
F.6 ENUMErator ISSUES [CCB].....uuuiiii i e e et rme e e e et e e e e e e e e e eeeae v e e enrennnns 272
F.7 Numeric Conversion Errors [FLC]o 273
F.8 String Termination [CIM].......coi it e e e e e e e ame e e e e e aan 273
F.9 Buffer Boundary Violation (Buffer Overflow) [HCB].........oooiiiiii e, 273
F.10 Unchecked Array INAeXiNg [XY.Z].......ouuuiiiiiiiiiiii et e e 273
F.11 Unchecked Array Copying [XYWV] o oottt m e e e eeeeas 273
F.12 Pointer Casting and Pointer Type Changes [HEC].......ccooo i 273
F.13 Pointer AftNMELIC [RVG]uueieiiiiiiiiiiie ettt e e ame e e e e 274
F.14 Null Pointer Deref@eNCe PXYH].....oo i ietm et e e e 274
F.15 Dangling Reference to Heap XY K] ... it emea e e e e e e e e s 274
F.16 Arithmetic Wrap-around Error [FIF] ..ot 274
F.17 Using Shift Operations for Multiplication and Division [PIK].........ccccoviiiiiiiiiiiinei e, 274
I R o | o I T (=T g ST [0 T = () g I, 074 | S 274
F.19 Choice of Clear NameS [NALL.......uu it e e e e enee s 274
F.20 Dead Store [WXQ....oco oottt e —————— 275
e R U o U Y=o IV T = o L= 20720 T 275
F.22 Identifier Name REUSE [YOWV]....ouiiiiiiiiiiiiiiiii ettt ma et et e e e e e e 275
F.23 Namespace ISSUES [BIL]........cooiiiiiiiiiiiiii e me e e e e e e e e e as 276
F.24 Initialization of Variables [LAV]......coo e emre e e et e e e e e eaeas 276
F.25 Operator Precedence/Order of Evaluation [JCM]........coiiiiiiiiiiiiiimeee e 276
F.26 Sideeffects and Order of EvaluatiorSJAM]............uuuiiiiiiiiiiiiiiiien e e e e e e e 277
F.27 Likely Incorrect EXPression [KOAL e e e e et smr e e e e e e e e e e e enennaanas 278
F.28 Dead and Deactivated Code [XY.QJ....cooiuutiiiiiieeiiiiimriiiie it ame e e e e e e e 278
F.29 Switch Statements and Static ANAlySIS [CLL]......uuuiiiiiiiiiiiiiiii e e 279
F.30 Demarcation of Control FIOW [EOJ]........ciiiiiiiiiiiiiiiee s e e e ee et vme e e e e e e e e e eenaennnns 279
F.3L Loop Control VariablesS [TEX].......ccuu ittt m e e e e e e s e 279
T Y O 11 & o)Vt o] U= = {0 74 o | 279
F.33 Structured Programming [EWD].........oouriii i 280
F.34 Passing Parameters and Return Values [CSJ].......uuuuiiiiriiiriieieiiimr e 280
F.35 Dangling References to Stack Frames [DCM]........coovriiiiiiiii i 281
F.36 Subprogram Signature MismatCh [OTRI...........ooiiiiiiiiiim e 281
R A = LTt U €= o I [S 282
F.38 Ignored Error Status and Unhandledd@ptions [OYB].......ccooviiiiriiiiiiiiiis i, 282
F.39 Termination Strategy [REU]..........ouiiiiiiiiiie e 282
F.40 Typebreaking Reinterpretation of Data [AMV].......ccoooiiiiiii e, 282
e R V1= o o T Y == |G 2 1 282
F.42 Templates and GeneriCS [SYMY]......c.uuuiiiiiiiiiiiiimiiie e e e e neeanes 283
F.A3 INNEMTANCE RIP]...eiiiiiiiiiiiiiiie ettt e amreeaeeeeeeeeeeeeeeeeeees 283
X © ISQIEC2012¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N @10

F.44 Extra IntrinSIiCS [LRM].....ccooiiiiiiiiii et e me e e e e e e e e e e e e as 283
F.45 Argument Passing to Library FUNctions [TRJI]......cooooiiiiii i 283
F.46 Inter-language Calling [DJIS]......uuettieiiiiiiiiiiiieei it rrme e e et eme e e es 283
F.47 Dynamicallylinked Code and Selhodifying Code [NYY]....ccooooiiiiiiiiiiiiiiiciiie e, 284
F.48 Library Signature [NSQY] e ettt ittt e e ime e e e e e e e e e e amr e e e e e e e e 284
F.49 Unanticipated Exceptions from Library Routines [HIW]..........cccuviieiiiiiiicieeece e 284
F.50 Preprocessor DIreCVEENMPY]... ...t e et e e e e e e e e e ennan s 284
F.51 Suppression of Languag#efined Runtime Checking [MXB]........ccccviiiiiiiiiiiiiiiieieeeee e 285
F.52 Provision of Inherently Unsafe Operations [SKL]........ccuuuiiiiiiiiiiiiiieeeeee e 285
F.53 Obscure Language Features [BRS].......cccciiiiiiiiiiiiiin ittt ee e e e e e e eeneees 285
F.54 Unspecified Behaviour [BQFE].........oiiiiiiiiiiiieiiie ettt 285
F.55 Undefined BENAVIOUr [EWE]cooo it 285
F.56 Implementation-defined Behaviour [FAB]..........ccooiii e 286
F.57 Deprecated Language BRIreS [MEM].........oooiiiiiiiiiii e m e 286
AnnexG (nformative) Vulnerability descriptions for the language SPARKcooiiiiiiiiniiieee e 287
G.1 Identification of standards andssociated documentation.................cooeoeeeiiiiceeiieeieeeieee e 287
G.2 General terminology and CONCEPLS.ceiiiuuttiiiiieee e e e it ettt e e e e enr e e e e e e e eeeeee s 287
G.3 Type SYSIEM [IHN]....ooiiiiiiiiii e rme e e e e e aaaaaaaaaaeaaas 288
G.4 Bit Representation [STR]o e e e e s e e e e e e e e e eeae s smreerenan s 289
G.5 Floatingpoint ArithmetiC [PLF].........oooiiiiiiieiee et 289
G.6 Enumerator ISSUEHCCB].......cooi e ———————— 289
G.7 Numeric Conversion Errors [FLC]ot e e e e e e 289
G.8 String Termination [CIMIouiii ittt e e e e e e r e e e e ame e e e e anees 289
G.9 Buffer Boundary Violation (Buffer Overflow) [HCB]..........cooooiiiiiiiiiiiicivveeeeeee e 289
G.10 Unchecked Array INAeXiNg [XYZ].. oot e e enr s e e e e e e e e e e e e e e s 289
G.11 Unched&ed Array COopYiNg [XYWV].. ..o e ittt m e e e e s eeen 289
G.12 Pointer Casting and Pointer Type Changes [HEC].........cooooiiiiiiiiiic e, 290
G.13 Pointer ArithmetiC [RVG].....couuiiiiii i e e rmr e et s e e e e e e e e e araaa s e e eerennnns 290
G.14 Null Pointer Dereference [XYH].... ..o it et 290
G.15 Dangling Reference to Heap [XYK]...ooo e es e 290
G.16 Arithmetic Wrap-around Error [FIE].........ooii i e et e e e s e e e e e e e eenneas 290
G.17 Using Shift Operations for Multiplication and Division [PLK]............ccoouiiiiiiimiiiiieeeeiieee, 290
LT TS T [bt (=] 0 £ o = 0) €72 | 290
G.19 Choice of Clear Names [NAIL ... et ne e a e eeeas 290
G.20 Dead StOre [WXQ] .. oot iiiiiiiiiiiieee ettt ———aaaaaaaaaaaaaaaas 290
G.21 Unused Variable [YZS].... oot rrt s e e e e an e e e aean 290
G.22 Identifier Name ReUSE [YOW] .. .ottt e e eeenanns 291
G.23 NameSPACE ISSUES [BIL]...coiiiiiiiiiiiiiiiii e e rme e e e e e aeaaeeas 291
G.24 Initialization Of VariablesS [LAV] ...t emrs s e e e e e e e e e e e e e e 291
G.25 Operator Precedence/Order of Evaluation [JCWI........cooiiiuiiiiiiiiiiiee e 291
G.26 Sideeffects and Order of Evaluation [SAM]I........iiiiiiimr e 291
G.27 Likely Incorrect EXPresSionN [KOA] ... e et e e et e e e e e e e e e e e e e e e 291
G.28 Dead and Deactivated Code [XYQ] . i oottt enr e 291

© ISTIEC2012¢ All rights reserved Xi

WG 23/N @10 Baseline Edition 2 TR 24772

G.29 Switch Statements and Static Analysis [CLL]..........coooriiiii e 291
G.30 Demarcation of CONrol FIOWEOJ]..... . e e 292
G.31 Loop Control Variables [TEX]........oo ittt e e e e eme 292
G.32 Off-by-0ne Error [XZH].....coo oo ——— 292
G.33 Structured Programming [EWD].........cccuuiiiiiiieaiiiime et 292
G.34 Passing Parameters and Return Values [CSJ]..........uuiiiiiiiiiiiiiiiiiee e 292
G.35 Dangling Referetes to Stack Frames [DCM]........oocuuiiiiiiiiiiiiccie i e e veenn e 292
G.36 Subprogram Signature Mismatch [OTRI.........ooiiiiiiiiiieieiie e 292
G.37 RECUISION [GDL ..ttt ettt e e e e e bbbt e e e e e ame e e e s et a e e e e e e e e aaans 293
G.38 Ignored Error Status and Unhandled Exceptions [OYB].......cccccoiviiiiiiiiiie i 293
G.39 Termination Strategy [REUL......coooiiiiiiiiii ittt 293
G.40 Typebreaking Reinterpretation of Data [AMV].......cooiiiiiiiiiiiioeiiie e 293
L 5 |V =T o g T A == 2 O 294
G.42 Templates and GENEIICS [SYM]ouiiiiiiiiiiiiiiiie it e e 294
G.43 INNEIITANCE [RIP]...ciiiiiiiiiiiiit ettt e e e e e et e e e e e e s srme et a e e e e e e e e aanes 294
G.44 EXra IntrinSiCS [LRMI... oo e et e e e e e e e et s e e e e e e e e e e b rme e e e e e eeraa s 294
G.45 Argument Passing to Library FUNCHONS [TRJI].....ccuuriiiiiiiiiiiime e 294
G.46 Inter-language Calling [DJIS].......ccoooiiiiiiii e ———— 294
G.47 Dynamicallylinked Code and Sethodifying Code [NYY].....coo oo 294
G.48 Library Signature [NSQJ.......ooiiiiiiiiiii et e e 294
G.49 Unanticipated Exceptions from Library Routines [HIW]............coooiiiiiiic 294
G.50 PreProcessor DIreCtives [NMP].......ooouiiiiii e mr e e e e e e e e e e eeneaes 295
G.51 Suppression of Languaggefined Runtime Checking [MXB]...........ccoooviiiiiiiiiimiieeeeeee 295
G.52 Provision of Inherently Unsafe Operations [SKL].........ouviiiiiiiiiiiiiiciiinme e 295
G.53 Obscure Language Features [BRS].......cuuiiiiiiiiiiiiiei e e e eetmr e e e e e e e s e e e e e e ennes 295
G.54 Unspecified Behaviour [BOQE].........cuuiiiiiiiiieiiiie et m e 295
G.55 Undefined Behaviour [EWE].......ccoooi oottt 295
G.56 Implementation-Defined Behaviour [FAB]...........iiiiii et 295
G.57 Deprecated Language Features [MEMI.........cooiiiiiiiiiiiiime it een e 296
G.58 Implications for standardization..................oooiiiiiii e ——————— 296
AnnexH (nformative) Vulnerability descriptions for the language PHRP.........cccccccoiiii e, 297
H.1 Identification of standards and associated documentation.............c.coooeeuverimiiieieeeeee e, 297
H.2 General Terminology and CONCERLS.......uuuiiiiiieiii e c e e e e e e e e e e e e e e eeanee 297
H.3 Type SysStem [IHN ..o ettt sama e 299
H.4 Bit Representations [STR].....ccciioiiiiiiiii it e e enr e 300
H.5 Floatingpoint Arithmetic [PLF].......ccoo o esie e e e e eaeas 300
H.6 EnUMerator ISSUES [CCB].....cco oottt nnme e e e e e e as 301
H.7 Numeric Conversion Errors [FLC] i iiiiiiiiiiiere e ees s ime e e e e e e e e e e e e e e e e e e a e e e e e 302
H.8 String Termination [CIM].......oouiiiiii e e e e e et mr e e e e ea s s e e e e e e e eearenmeeeeeeennes 303
H.9 Buffer Boundary Violation (Buffer Overflow) [HCBJ.........coooiiiiiiiiiiiiieeeeeeeeiieeeee e 304
H.10 Unchecked Array INAeXiNg [XY.Z].....uuuuuuuiriiiiiiiiiitiimneessssss s imr e e e e e e e e e e e e e e e e aaeeaaeeae e 304
H.11 Unchecked Array Copying [XYWW]. ... oot e e e e e e et eme e s e e e e e e e anennna s 304
H.12 Pointer Casting and Pointer Type Changes [HEC]........cooiiiiiieeiieeee e 304
Xii © ISAIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N @10

H.13 Pointer ArthmMEtIC [RVG]....uuuuieiiiiiiiiiiiieitteeiiee s rme amneaeeeeeees 304
H.14 Null Pointer Bereference PXYH] . ..o e e 304
H.15 Dangling Reference to Heap [XYK].... .o et 304
H.16 Arithmetic Wrap-around Error [FIRE]...... ... i a e e e e e e e e e e e 304
H.17 Using Shift Operations for Multiplication and Division [PLK]..............ccccceeiiiiiiiiiiiieeeeeeee 305
H.18 Sign EXtENSION ErrOr [XZI].. ..ottt 307
H.19 Choice of Clear NamesS [NAIL ... e e e e e et s emr e s s e e e e e e e eeaanan e e emrrenes 307
H.20 Dead Store [WXQY.....coi ittt emr et e e e e e st e e e e e e e me e e e e e e 308
H.21 UNused Variable [YZS].... ... ittt ettt e e e ams e e e e e e as 308
H.22 Identifier Name REUSE [YOWY]....uuuiii it e e et s s eme e s e e e e e e e eentenn e e e e e emrens 308
H.23 NamMeSPACE ISSUES [BILL.....oeeeiiiiiiiiiiiiii ettt ime e e e e et emr e e e e e e e e 309
H.24 Initialization of Variables [LAV]........ it me e 310
H.25 Operator Precedence/Order of Evaluation [JCW].........cooiviiiiiiiiii e emrea 311
H.26 Sideeffects and Order of EVAlUBIN [SAM].....coooiiiiiiiiee i 312
H.27 Likely Incorrect EXPression [KOA] ... i ettt e e e e e e 312
H.28 Dead and Deactivated Code [XYQ].....ooouiiiiiiii e e e e e e e e e e e e e eeeenes 314
H.29 Switch Statements and Static ANalySiS [CLL]........cuiiiiiiieei e 314
H.30 Demarcation of Control FIOW [EQJ].......cccooiiiiiiiiiiiiiiie e 315
H.31 Loop Control Variables [TEX] ..ot ieeeettiss s e e e e e e eee s s sme e e s s e e e e e eseennsnnn e e emernnes 316
H.32 Off-DY-0N€ ErrOr [XZHIottt e e e 316
H.33 Structured Programming [EWD]..........oooiiiiiiiiiiiii et e 316
H.34 Passing Parameters and Return Values [CSd].......ccoieiiiiiiiiiiimie e eeeeeiiinss s eeeeeevier e e e e e e eeaeeen 317
H.35 Dangling References to Stack Frames [DCM]..........cuuiiiiiiiiiiiiiieeeee e 318
H.36 Subprogram Signature Mismatch [OTR].......cccoooiiiiiiiiiiiiii e, 318
[1R A =Yl U]] o o [I 5 T 318
H.38 Ignored Error Status and Unharetl EXceptions [OYB].......ccooiiiiiiiiiiiiiiimiceeeeiieeeeee e 319
H.39 Termination Strategy [REUJ.........cooo e e 320
H.40 Typebreaking Reinterpretation of Data [AMV].......ccoooiiiiiiiiiiiciicee e eemr e 320
H.AL MeMOIY LEAK [XY L] .. iiiiiiiiiieiiiiiiiiiee ettt ettt e rme sttt e e e e e s st e et e e e e e e e e e nneees 321
H.42 Templates and GENEICS [SYM]....uuuiuiiiiiiiiiiiiiritiimisee s rime e e e e e e e e e e e e e e e aeaaaaeaaeee e 321
[17 S o o =T) =T g o | PSR 321
H.44 EXtra INrNSICS [LRM]...cooiiiiiiiiiiiiei ettt e e e e e e m e e e as 321
H.45 Argument Passing to Library FUNCHiONS [TRJI]...cocovviiiiii e 321
H.46 Inter-language Calling [DJIS].....cccoi ittt ee e ennnas 322
H.47 Dynamicallylinked Code and Sethodifying Code [NYY]....ccooooiiiiiiiiiiiiicciiie e, 322
H.48 Library Signature [NSQY].......coeuuiiiiiiiiii e e e e e e e e e e e e e et s s e e e e e e e eeatereeaeeeenennnn 322
H.49 Unanticipated Exceptions from Library Routines [HIW]...........ooooiiiiiiiiiiieieeeeeee 323
H.50 Preprocessor DIreGles [NMP].......ooo i s e s a e 323
H.51 Suppression of Rutime Checking [MXB].........oiiiiiiiiiiimee e 323
H.52 Provision of Inherently Unsafe Operations [SKL]........cccuuuiiiiiiiiiiiiieeeecee e 323
H.53 Obscure Language Features [BRS].........ccoooiiiiiii e 324
H.54 Unspecified Behaviour [BQFE]........ccoii it s smee s e e e e e e e eeaa e e emeennes 324
H.55 Undefined BENaVIOUr [EWE]cooi i 325
H.56 Implementationcdefined Behaviour [FAB].........uuuiiiiiiieiiieiis e me e e e 326

© ISTIEC2012 ¢ All rights reserved Xiii

WG 23/N @10 Baseline Edition 2 TR 24772

H.57 Deprecated Language Features [MEM]...........ovuiiiiiiiiiiieieimr e e e 326
2]][ToT | £= 0] 0/ 327
T 1= 330
Xiv

© ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N @10

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members c
ISO or IEC participate in the development of International Standards through technical committees establishe
by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutlimterest. Other international organizations, governmental and-non
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, IS
and IEC have established a joint technical committee, ISONEC

International Standards are drafted in accordance with the rules given in the |SQifd@ives, Par2.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held respaa for identifying any or all such patent rights.

ISO/IEA'R24772, which is a Technical Report, was prepared by Joint Technical Committee JISQLIEC
Information technologySubcommittee S22, Programming languages, their environmeatsd system
sditware interfaces

© ISTIEC2012 ¢ All rights reserved XV

WG 23/N @10 Baseline Edition 2 TR 24772

Introduction

All programming languages contain constructs thii incompletely specifiedxhibit undefined behaviar,

are implementationdependent, or are difficult to use correctlflhe use of those constructs may therefore
give rse tovulnerabilities as a result of which, software programs can execute differently than intended by
the writer. In some cases, these vulnerabilities campromise the safety of a systemtwg exploited by
attackers to compromise the security privacy of a system.

This Technical Report is intended to provide guidance spanning multiple programming languages, so that
application developers will be better able to avoid the programming constructs that lead to vulnerabilities in
software written in theirchosen languagand their attendant consequences. This guidance can also be

used by developers to select source code evaluation tools that can discover and eliminate some constructs
that could lead to vulnerabilities in their softwaoe to select a proggmming language that avoids

anticipated problems

It should be noted that this Technical Report is inherently incomplitis. not possible to provide a

complete list of programming language vulnerabilities because new weaknesses are discovered ¢pntinual
Any such report can only describe those that have been found, characterized, and determined to have
sufficient probability and consequence.

Furthermore to focus its limited resources, the working group developing this report decided to defer
comprehesivetreatment of several subject areas until future editions of the repdmese subject areas
include:

1 Objectoriented language feature@lthough some simple issues related to inheritance are
described in RIP)

1 Numerical analysis (although some simipdens regarding the use of floating point are described in
PLF)

1 Inter-language operability

XVi © ISAIEC2012 ¢ All rights reserve

10
11
12

13
14
15

16

17

18
19

20
21
22
23

24
25
26

Technical Report Baseline Ed 2 dSO/IEC TR 2472D12(E

Information Technology Programming Languagas Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and
Use

1. Scope

This Tehnical Report specifies softwapgogramming languageulnerabilitiesto be avoidedn the development
of systemswvhere assured behaviour is required for security, safety, mission critical and business critical software.
In general, this guidance is apalble to the software developed, reviewed, or maintained for any application.

Vulnerabilities are described in a generic manner that is applicable to a broad range of programming languages.

2. Normative references

The following referenced documents are isjgensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISTIEC 800062:2009 Quantities and units Part2: Mathematical signs and symbdtsbeuse in thenatural
sciences and technology
ISO/IE@382¢1:1993,Information technology Vocabularyt Part 1: Fundamental terms

3. Terms and definitions , symbols and conventions

3.1Terms and definitions

For thepurposes of this documenthe terms and definitiongjiven in ISO/IEC 238R and the followingapply.
Other terms are defined where they appeaiitalic type.

3.1.1 Communication

3.111

protocol

set of rules and supporting structures for the interactiof threads

Note 1: A protocol can be tightly embedded and rely upon data in memory and hardware to control
interaction of threads or can be applied to more loosely coupled arrangements, such as message
communication spanning networks and computer systems

© ISTIEC2010¢ All rights reserved 17

A WDN PP

© 00 N O O

10
11
12
13

14
15
16
17
18
19
20

21
22
23

24
25

26
27
28

29
30
31
32

33
34
35

36
37

WG 23/N @10 Baseline Edition 2TR 24772

3.11.2

stateless protocol

communication or cooperation between threads where no state is preserved in the protocol itself (example HTTP
or dired access to a shared resource)

Note 1: Since most interaction between threads require that state be preskrilee cooperating threads

must use values of the resources(s) themselves or add additional communication exchanges to maintain
state. Stateless protocols require that the application provide explicit resource protection and locking
mechanisms to guarangethe correct creation, view, access to, modification of, and destruction of the
resourceg for examplethe state needed forarrect handling of the resource

3.1.2 Execution model
3.121

thread

sequential stream of execution

Note 1: Although the term thread is used here and the context portrayed is that of shared memory threads
executing as part of a process, everything documented applies equally to other variants of concsaancy

as interrupt handlers being enabldy a process, processes being created on the same system using

operating system routines, or processes created as a result of distributed messages sent over a network. The
mitigation approaches will be similar to those listed in the relevant vulnerabgiseriptions, but the

implications for standardization would be dependent on how much language support is provided for the
programming of the concurrent system.

3.12.2
thread activation
creation and setup of a thread up to the point where the thread begxrecution

Note 1: Threads may depend upon one or more other threads to definaectess to otheobjects to be
accessed and to deterime its duration

3.12.3
activated thread
threadthat is created andhen begins execution as a resulttbfead activaion

3.124

activating thread

thread that exists first and makes the library calls or contains the language syntax that causes the activated thread
to be activated

Note 1: The Activating Thread may or may not wait for the Activated Thread to finish @mtivaand may or
may not check for errors if the activation fails. The Activating Thread may or may not be permitted to
terminate until after the Activated Thread terminates.

3.125
static thread activation

18 © ISTIEC2012 ¢ All rights reserve

(62N >N

© 00 N O

10
11
12

13
14
15
16

17
18
19

20
21
22
23

24
25
26
27
28
29
30
31
32
33
34

35
36
37

Baseline Editiol2 TR 24772 WG 23/N @10

creation and initiation of a thread by progranitiation, an operating system or runtime kernel, or by another
thread as part of a declarative part of the thread before it begins execution

Note 1: In static activation, a static analysis can determine exactly how many threads will be created and how
muchresource, in terms of memory, processors, cpu cycles, priority ranges andhirdad communication
structures, will be needed by the executing program before the program begins.

3.12.6

dynamic thread activation

creation and initiation of a thread by ather thread (including the main program) as an executable, repeatable
command, statement or subprogram call

3.12.7
thread abort
request to stop and shut down a thread immediately

Note 1: The request is asynchronous if from another thread, or synchroiidt@m the thread itself. The
effect of the abort requestsuch asvhether it is treated as an exception) and its immediabgt(is, how long
the thread may continue to execute before it is shut down) depend on langsjpgeific rules. Immediate
shutdown minimizes latency but may leave shared data structures in a corrupted state.

3.12.8
termination directing thread
thread (including the OS) that requests the abort of one or more threads

3.129

thread termination

completion and orderly shutdowaof a thread, where the thread is permitted to make data objects consistent,
release any acquired resourcemd notify any dependent threads that it is terminating

Note 1: There are a number of steps in the termination of a thread as listed below, bundamgupon the
multithreading model, some of these steps may be combined, may be explicitly programmed, or may be
missing.

1 The termination of programmed execution of the thread, including termination of any synchronous
communication;
the finalization of tle local objects of the thread;
waiting for any threads that may depend on the thread to terminate;
finalization of any state associated with dependent threads;
notification thatfinalization is complete, including possible notification of the activatisg;ta
removal and cleanup of thread control blocks and any state accessible by the tbréegabther
threads in outer scopes.

=A =4 =4 =4 =4

3.12.10
terminated thread
thread that is being héed from any further execution

© ISTIEC2012¢ All rights reserved 19

A WDN PP

o Ol

10
11
12
13
14

15
16

17
18
19
20
21

22
23
24

25
26
27
28

29
30
31
32
33

34
35
36

WG 23/N @10 Baseline Edition 2TR 24772

3.1211

master thread

thread which must wait foaterminated thread before it can take further execution stepgliiding termination
of itself)

3.1.2.12
process
single execution of a prograror portion of an application

Note 1: Processeslo not normally share a common memory space, diten share

1 processor,

network,

operating system,

filing system,
environment variables, or
other resources.

= =4 =4 =4 =4

Processes are usually started and stopped by an operating system and may or may not interact with other
processesA process may contain multiple threads.

3.1.3 Properties

3.1.3.1

software quality

degree to which software implements the requirements described by its specificatidnthe degree to which
the characteristics of a software product fulfill ksquirements

3.13.2
predictable execution
property of the program such that all possible executions have results that can be predicted from the source code

3.1.4 Safety

3.14.1

safety hazard

potential source of harm

Note 1 IEC 6308n Y RSFAYySa I alFT FNRéE Fa F GLRGSYGALFE &2
damage to the health of people either directly or indirectly as a result of damage to property or to the
SYGANRYYSY(é o { 2YS RS NAW@ StendaidioB6/ RRdadeiRtBexefigittnOK a | Y
GKEFENYE (2 AyOfdzRS YFOGSNALFE YR SY@ANRBYYSyidlf RI YLl
environmental damage).

3.1.4.2
safety-critical software
software for applicons where failure can cause very serious consequences such as human injury or death

20 © ISTIEC2012 ¢ All rights reserve

A WDN PP

0 N o O

10
11
12

13
14
15
16
17
18
19
20
21

22
23
24
25

26

27

28
29

30

31

Baseline Editior2

Note 1: IEC 615081 Y RS T ANGStal IR FHRLRG 61 NB ¢

TR 24772

- a

WG 23/N @10

daz2fiasl NB

functions in a safetyelated system.Notwithstanding that in soméomains a distinction is made between

safetyrelated (can lead to any harm) and safetyjtical (life threatening), this Technical Report uses the term

safety-critical for all vulnerabilities that can result in safety hazards.

3.1.5 Vulnerabilities

3.151

application vulnerability

security vulnerability or safety hazard, or defect

3.15.2
languagevulnerability

property(of a programming language) that ceontributeto, or that is stronglyorrelated with, application

vulnerabilities in programs written in that language

Note 1: The term "property” can meathe presence othe absence of a specific featynesed singly or in
combination As an example of the absence of a featuracapsulatia (control of where namesanbe

referenced from) is generally considerkdneficialsince it narrows the interface between modules and can

help prevent data corruptionThe absence of encapsulation from a programming language can thus be
regarded as a \nerability. Note that a property together with its complemenanboth be considered
language vulnerabilitieskFor example, automatic storage reclamation (garbage collectexmpea
vulnerability since it can interfere with time predictability anduksn a safety hazard. On the other hand,

the absence of automatic storage reclamaticanalsobe a vulnerability since programmers can mistakenly

free storage prematurely, resulting in dangling references.

3.15.3
security vulnerability

0 K

weakness in an information system, system security procedures, internal controls, or implementation that could

be exploited or triggered by a threat

3.2 Symbols and conventions

3.2.1 Symbols

For the purposes of this document, tegmbolsgiven in ISO/IEC 800¢®apply. Other symbols are defined

where they appear in this document.
3.2.2 Conventions

Programming language token and syntactic token appeeoimier

© ISTIEC2012 ¢ All rights reserved

font.

21

10
11
12

13
14
15

16

17
18
19
20

21
22
23
24

25
26
27
28

29

30
31
32
33
34
35
36

WG 23/N @10 Baseline Edition 2TR 24772

4. Basic Concepts

4.1 Purpose of this Technical Report

This Technicaldport specifies software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mission critical and business critical software.
In general, this guidance is applicablghe software developed, reviewed, or maintained for any application.

This Technical Report does not address software engineering and management issues such as how to design and
implement programs, use configuration management tools, use managerial pes;esxl perform process
improvement. Furthermore, the specification of propertiesd applicationso be assuredre not treated.

While thisTechnical Repodoes not discuss specification or design issues, there is recognition that boundaries
among the warious activities are not cleawut. ThisTechnical Reposdeeks to avoid the debate about where low

level design ends and implementation begins by treating selected issues that some might consider design issues
rather than coding issues.

The body of thiFechnical Report provides users of programming languages with a lanonasgpendent
overview of potential vulnerabilities their usage Annexes describe how the general observations apply to
specific languages.

4.2 Intended Audience

The intended audiece for this Technical Repatethose who are concerned with assuritige predictable

execution of thesoftware of their system; that is, those who are developing, qualifying, or maintaining a software
system and need to avoid language constructs thaldcause the software to execute in a manner other than
intended.

Developers of applications that have clear safety, security or mission criticality are expected to be aware of the
risks associated with their code and could use T@shnical Repotb ensure that theirdevelopment practices
address the issues presented by the chosen programming languages, for example by subsetting or providing
coding guidelines

It should not be assumed, howevéhat other developers can ignore thi®chnical ReportAweakness i non
critical applicatiormay provide the route by which an attacker gains control of a system or otherwise distpt
hosted applications that are criticalt is hoped thatall developers would use thiBechnical Repottb ensure that
common vulnerabilities are removed or at least minimized from all applications.

Secific audiences for this International Technical Repantude developersmaintainers and regulatoi:

Safetycritical applications that might cause loss of life, humauarin or damage to the environment
Securitycritical applications that must ensure properties of confidentiality, integrity, and availability
Missioncritical applications that must avoid loss or damage to property or finance

Businesgritical applicatbns where correct operation is essential to the successful operation of the
business

9 Scientific, modeling and simulation applications which require high confidence in the results of possibly
complex, expensive and extended calculation

=A =4 =4 =2

22 © ISTIEC2012 ¢ All rights reserve

DO WDN -

\l

10
11
12

13
14

15

16
17
18
19
20
21
22
23
24
25
26

27
28
29

30

31

32
33

34
35

36

Baseline Editiol2 TR 24772 WG 23/N @10

4.3 How to Use This Document

This Technical Report gathers descriptions of programming language vulnerabilities, as well as selected
application vulnerabilities, which hawecurred in the past and are likely to occur agdiach vulnerability and its
possible mitigationsre described in the body of the report in a languagéependent mannerthough

illustrative examples may be language specifit addition, annexes for particular languages describe the
vulnerabilities and their mitigations in a manner specific to thgglaage.

Because new vulnerabilities are always being discovered, it is anticipated th@ethnical Repowill be revised
and new descriptions added-or that reason, a scheme that is distinct from slduse numbering has been
adopted to identify thevulnerability descriptionsEach description has been assigned an arbitrarily generated,
unique threeletter code. These codes should be used in preference teckause numbers when referencing
descriptionsbecause they will not change as additional efgstions are added to future editions of this Technical
Report.

The main part of tls Technical Reportontains descriptions that are intended to be langudamgependent to the
greatest possible extenAnnexesapply the generic guidance to particular gramming languages.

This Technical Repottas been written with several possible usages in mind:

1 Programmers familiar with the vulnerabilities of a specific language can reference the guide for more
generic descriptions and their manifestations in lessifamlanguages.

f Tool vendors canuse thethréeS 1 G SNJ O2RS& a4 | adzOOAy Ol ¢l & G2
considered by their tools.

91 Individual organizations may wish to write their own coding standards intended to reduce the number of
vulnerabilities in their software products. The guide can assist in the selection of vulnerabilities to be
addressed in those standards and the selection of coding guidelines to be enforced.

1 Organizations or individuals selecting a language for use injagbraay want to consider the
vulnerabilities inherent in various candidate languages.

1 Scientistsengineers, economists, statisticians, or others who write computer programs as tools of their
chosen craft can read this document to become more familian #ie issues that may affect their work.

Thedescriptionsnclude suggestions for ways of avoiding the vulnerabilitiésme are simply the avoidance of
particular coding constructs, but others may involve increased review or other verification andivalida
methods. Source code checking tools can be used to automatically enforce some coding rules and standards.

Clause 2 provides Normative references, and Clause 3 provides Terms, definitions, symbols and conventions.
Clause 4 provides the basic conceysed for this Technical Report.

Clause 5Yulnerability Issuegrovides rationale for this Technical Report and explains how many of the
vulnerabilities occur.

Clause 6Programming Language Vulnerabilitigsovides languagandependent descriptions ofulnerabilities in
programming languages that can lead to application vulnerabilities. Each description provides:

1 a summary of the vulnerability,

© ISTIEC2012¢ All rights reserved 23

WG 23/N @10 Baseline Edition 2TR 24772

1 9 characteristics of languages where the vulnerability may be found,
2 91 typical mechanisms of failure,
3 9 techniques that programmers can use to avoid the vulnerability, and
4 1 ways that language designers can modify language specifications in the future to help programmers
5 mitigate the vulnerability.
6 Clause 7Application Vulnerabilitiegprovides descriptions of seled application vulnerabilities which have been
7 found and exploited in a number of applications and which have well known mitigation techniques, and which
8 result from design decisions made by coders in the absence of suitable language library routithes or o
9 mechanisms.For these vulnerabilities, each description provides:

10 1 asummary of the vulnerability,

11 1 typical mechanisms of failure, and

12 i techniques that programmers can use to avoid the vulnerability.

13 Clause 8New Vulnerabilitiesprovides new vulnerdlities that have not yet had corresponding programming
14 language annex text developed.

15 AnnexA, VulnerabilityTaxonomyand List is a categorization of the vulnerabilities of this report in the form of a
16 hierarchical outline and a list of the vulnerabé#iarranged in alphabetic order by their three letter code.

17 AnnexB, Language Specific Vulnerability TempJasea template for the writing of programming language specific
18 annexes that explain how the vulnerabilities from clause 6 are realized in tbgtggnming language (or show
19 how they are absent), and how they might be mitigated in langesgeeific terms.

20 Additional annexes, each named for a particular programming language, list the vulnerabilities of Clauses 6 and 7
21 and describe how eackulnerabilty appeardn the specific language and how it may be mitigated in that

22 language, whenever possible. All of the langudgpendent descriptions assume that the user adheres to the

23 standard for the language as listed in the stiduse of each annex.

24 5 Vulnerability issues

25 5.1 Predictable execution

26 There are many reasons why software might not execute as expected by its developers, its users or other

27 stakeholders. Reasons include incorrect specifications, configuration management errors and a myriadsof othe
28 This Technical Report focuses on one caube usage of programming languages in ways that render the

29 execution of the code less predictable.

30 Predictable executiois a property of a program such that all possible exenistioave results that can be
31 predicted from examination of the source codachieving predictability is complicated by that fact that software
32 may be used:

33 1 on unanticipated platformsf@r example ported to a different processor)
34 1 in unanticipated ways (assage patterns change),
35 1 in unanticipated contextd@r example software reuse and systeinf-system integrations), and

24 © ISTIEC2012 ¢ All rights reserve

a b~ WwN

© 00 N O

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27

28
29

30

31

32
33
34
35
36

Baseline Editiol2 TR 24772 WG 23/N @10

1 by unanticipated userddr examplethose seeking to exploit and penetrate a software system).

CdzNI KSNX 2 NB = (2 R ItivdtQd softizark systzing druzily gGeRayitges that most software will be
attacked either because it is a target for penetration or because it offers a springboard for penetration of other
software.! OO2NRAYy It &> G2RI &Qa LINRE NEnsuredidictaMaeietutian kesgite | RF
the new challenges.

Software vulnerabilitieare unwanted characteristics of softwatfeat may allow software to execute in watfsat

are unexpected.Programmers introduce vulmabilities into software by using language features that are
inherently unpredictable in the variable circumstances outlined above or by using features in a manner that
reduces what predictability they could offe©f course, complete predictability is &feal (particularly because

new vulnerabilities are often discovered through experience), but any programmer can improve predictability by
careful avoiding the introduction of known vulnerabilities into code.

This Technical Report focuses on a particalass of vulnerabilitiesanguage vulnerabilitiesThese are

properties of programming languages that can contribute to (or are strongly correlatedapitiication

vulnerabilities searity weaknesses, safety hazards, or defeds. example may clarify the relationshiphe

LINE AN YYSNRa dzaS 27F | & dondhetilen@enai be ¥xploitedday ab atfackef to i K |
place incorrect return values on the program stack, ¢epassing control of the execution to code provided by

the attacker. The string copying function is the language vulnerability and the resulting weakness of the program
in the face of the stack attack is the application vulnerabilithe programming leguage vulnerability enables

the application vulnerabilityThe language vulnerability can be avoided by using a string copying function that
does set appropriate bounds on the length of the string to be copigdusing a bounded copy function the

progt YYSNJ AYLINR@S&a GKS LINBRAOGFIOoAfTAGE 2F GKS O2RSQa

The primary purpose of this Technical Report is to survey common programming language vulnerabilities; this is
done in Clause 6Each description explains how an application vulnerability cartrelbuClause 7, a few

additional application vulnerabilities are describethese are selected because they are associated with language
weaknesses even if they do not directly result from language vulnerabilfi@sexample, a programmer might
havestored a password in plaintext (sP€YM) because the programming language did not provide a suitable
library function for storing the password in a nogcoverable format.

In addition to considering the individual vulnerabilities, it is instructive tws@er the sources of uncertainty that
can decrease the predictability of softwar€éhese sources are briefly considered in the remainder of this clause.

5.2 Sources of unpredictability in language specification

5.2.1 Incomplete or evolving specification

The design and specification of a programming language involves considerations that are very different from the
use of the language in programminganguage specifiers often need to maintain compatibility with older

versions of the languageeven to the eient of retaining inherently vulnerable featureSometimes the
aSYlLyiada 2F yS6 2N O2YLX SE FSIGdz2NB&a | NBy Qi O2YL) S
features.

© ISTIEC2012¢ All rights reserved 25

=

ga b~ WD

(o]

10

11
12
13
14
15
16

17

18
19
20
21
22

23

24
25
26
27

28

29

30
31
32
33

WG 23/N @10 Baseline Edition 2TR 24772

5.2.2 Undefined behaviour

LiQa aAyYLX e y2i Liaaraglammid) lafighddd to deribé eS8 y(pbsEibleobldaviodr. For
example, the result of using a variable to which no value has been assigned is left undefined by most languages.
In such cases, a program might do anythimgcluding crashing with no diagstic or executing with wrong data,
leading to incorrect results.

5.2.3 Unspecified behaviour

The behaviour of some features may be incompletely defined. The language implementer would have to choose
from afinite set of choices, but the choice may not gparent to the programmer. In such cases, different
compilers may lead to different results.

5.2.4 Implementation -defined behaviour

In some cases, the results of execution may depend upon characteristics of the compiler that was used, the
processor upon wich the software is executed, or the other systems with which the software has interfaces.
principle, one could predict the execution with sufficient knowledge of the implementation, but such knowledge
is sometimes difficult to obtainFurthermore, dpendence on a specific implementatiaiefined behaviour will

lead to problems when a different processor or compiler is ussgimetimes if different compiler switch settings
are used.

5.2.5 Difficult features

Some language features may be difficult to uretand or to use appropriately, either due to complicated

semanticsfor example floating point in numerical analysis applications) or human limitatifomrsgxample,

deeply nested program constructs or expressiormetimes simple typing errors cande@ major changes in
behaviour without a diagnostiéqr examplefi @ LAYy 3 al¢ F2NJ [aadA3yYSyld 6KSy 2\
comparison).

5.2.6 Inadequate language support

No language is suitable for every possible applicatieurthermore, programmersometimes do not ave the

freedom to select the language that is most suitable for the task at hand. In many cases, libraries must be used to
supplement the functionality of the language. Then, the library itself becomes a potential source of uncertainty
reducing the predictability of execution.

5.3 Sources of unpredictability in language usage

5.3.1 Porting and interoperation

When a program is recompiled using a different compiler, recompiled using different switches, executed with
different libraries, egcuted on a different platform, or even interfaced with different systems, its behaviour will
change. Changes result from different choices for unspecified and implementifored behaviour,

differences in library function, and differences in underyiardware and operating system suppofthe

26 © ISTIEC2012 ¢ All rights reserve

~N o o1 b~

10
11

12
13
14
15
16
17

18
19
20
21

22
23
24

25

26
27

28
29

Baseline Editiol2 TR 24772 WG 23/N @10

problem is far worse if the original programmer chose to use implementatependent extensions to the
language rather than staying with the standardized language.

5.3.2 Compiler selection and usage

Nearly alkoftware has bugs and compilers are no exceptidbhey should be carefully selected from trusted
sources and qualified prior to us®erhaps less obvious, though, is the use of compiler switdbé&erent switch
settings will result in differences generated code A careful selection of settings can improve the predictability
of code, for example, a setting that causes the flagging of any usage of an implemexfiined extension.

6. Programming Language Vulnerabilities

6.1 General

This clause mvides languagéndependent descriptions of vulnerabilities in programming languages that can lead
to application vulnerabilitiesEach description provides:

1 a summary of the vulnerability,

characteristics of languages where the vulnerability may be found

typical mechanisms of failure,

technigues that programmers can use to avoid the vulnerability, and

waysthat language designers can modify language specifications in the future to help programmers
mitigate the vulnerability.

=A =4 =4 =4

Descriptions of how vulnerdiiies are manifested in particular programming languages are provided in annexes

of this Technical Report. In each case, the behaviour of the language is assumed to be as specified by the stand:
cited in the annex. Clearly, programs could have diffeveiterabilities in a nosstandard implementation.

Examples of nostandard implementations include:

9 compilers written to implement some specification other than the stangard
91 use of nonstandard vendor extensions to the languaged
9 use of compiler swittes providing alternative semantics.

6.2 Terminology

The following descriptions are written in a langudagdependent manner except when specific languages are
used in examplesThe annexes may be consulted for language specific descriptions.

This clausevill, in general, use the terminology that is most natural to the description of each individual
vulnerability. Hence terminology may differ from description to description.

© ISTIEC2012¢ All rights reserved 27

© 00 N O

10

11

12
13
14
15

16
17
18
19

20
21
22
23

24
25

26
27
28

29
30
31

32
33
34
35

WG 23/N @10 Baseline Edition 2TR 24772

6.3 Type System [IHN]

6.3.1 Description of application vulnerability

When data values are converted from one data type to another, even when done intentionally, unexpected
results can occur.

6.3.2 Cross reference

JSF AV Rugel48 and 183

MISRA C 2004: 6.1, 6&3, 10.1, and 10.5

MISRA C++ 2008:932, 50-3 to 50-14

CERT C guitiges: DCLOT, DCLEC, DCL3E, EXPOE and EXP32
AdaQualityand Style Guide: 3.4

6.3.3 Mechanism of failure

Thetype of a data object informs the compiler how values shoulddy@esented and which operations may be
applied. Thaype systenof a language is the set of rules used by the language to structure and organize its
collection oftypes Any attempt to manipulate data objects with inappropriate operatigs aype error A
program is said to bgype safe(or type securgif it can be demonstrated that it has no type errc23]|

Every programming language has some sort of type sysfetanguage istatically typel if the type of every
expression is known at compile tim&he type system is said to B&ongif it guarantees type safety andeakif

it does not. There are strongly typed languages that are not statically typed because they enforce type safety
with run time checksZ7].

In practical terms, nearly every language falls short of being strongly typed (in an ideal sense) because of the
inclusion of mechanisms to bypass type safety in particular circumstakoeghat reason and because every

language hs a different type system, this description will focus on taking advantage of whatever features for type
safety may be available in the chosen language.

Sometimes it is appropriate for a data value to be converted from one type to anotimgpatibleone. For
example, consider the following program fragment, written in no specific language:

float a;
integer i;
a==a+i

The variablei"" is of integer type. It must be converted to the float type before it can be added to the data value.
An implicit cowersion, as shown, is called coercidf).on the other hand, the conversion must be explitit,
example "a := a + float(i) ", then the conversion is calledcast

Typeequivalencas the strictest form of type compatibility; two types are equivalénhey are compatible
without using coercion or casting.ype equivalence is usually characterized in termsaaie type equivalence
two variables have the same type if they are declared in the same declaration or declariid use the same
type nama or structure type equivalencetwo variables have the same type if they have identical structures.

28 © ISTIEC2012 ¢ All rights reserve

w N

© 00 N O O b~

10
11
12
13
14
15
16
17
18

19
20

21
22

23
24

25

26

27

28

29

30
31
32
33
34
35
36

Baseline Editiol2 TR 24772 WG 23/N @10

There are variations of these approaches and most languages use different combinatices@8]. Therefore,
a programmer skilled in one language may very well code inadvertent type errors when using a different
language.

It is desirable for a program to be type safe because the application of operations to operands of an inappropriate

type may produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of
static analysis for other problem&earching for type errors is a valuable exercise because their presence often
reveals design errors as well agligy errors. Many languages check for type errorsome at compildime,

others at runtime. Obviously, compiltime checking is more valuable because it can catch errors that are not
executed by a particular set of test cases.

Making the most use of thigype system of a language is useful in two walysst, data conversions always bear

the risk of changing the value. For example, a conversion from integer to float risks the loss of significant digits
while the inverse conversion risks the loss of aagtipnal value.Conversion of an integer value from a type with
a longer representation to a type with a shorter representation risks the loss of significant diggscan

produce particularly puzzling results if the value is used to index an a&b@yversion of a floatinrgoint value

from a type with a longer representation to a type with a shorter representation risks the loss of prediisn.

can be particularly severe in computations where thenber of calculations increasas a power of th problem
size. (It should be noted that similar surprises can occur when an application is retargeted to a machine with
different representations of numeric values.)

Second, grogrammercan use the type system to increase the probability of catchingydesirors or coding
blunders. For example, the following Atagment declares two distinct floatirgoint types:

type Celsius is new Float;
type Fahrenheit is new Float;

The declaration makes it impossible to add a value of type Celsiugaioe of type Fahrenheit without explicit
conversion.

6.3.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:
1 Languages that support multiple types and allow conversiohsden types.

6.3.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

i Takeadvantage of any facility offered by the programming language to declare distpes and use any
mechanism provided by the language processor and related tools to check for or enforce type
compatibility.

1 Use available language atubls facilities to preclude or detect the occurrence of coercidinit is not
possible, use humareviewto assist in searching for coercions.

1 Avoid casting data values except when there is no alternaacument such occurrences so that the
justification is made available to maintainers.

© ISTIEC2012¢ All rights reserved 29

© 00 NO Ol WDN P

el =
O

[Eny
N

13

14
15
16
17
18
19
20

21

22

23
24
25
26
27
28

29

30
31
32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

1 Use the most restricted data type that suffices to accomglighjob. For example, use an enumeration
type to select from a limited set of choicesi¢h asa switch statement or the discriminant of a union
type) rather than a more general type, such as intedgeris will make it possible for tooling to checklif a
possible choices have been covered.

1 Treat every compiler, tool, or rutime diagnostic concerning type compatibility as a serious issue. Do not
resolve the problem bynodifying the code by inserting an explicit cast, without further anglysiead
examine the underlying design to determine if the type error is a symptom of a deeper problem.

1 Never ignore instances of coercion; if the conversion is necessary, convert it to a cast and document the
rationale for use by maintainers.

1 Analyze the problematbe solved to learn the magnitudes and/or the precisions of the quantities needed
as auxiliary variables, partial results and final results.

6.3.6 Implications for standardization

In future standardizatiomctivities the following items should be consieel:

1 Language specifiers should standardize @ommon,uniform terminologyto describe their type systems
so that programmers experienced in other languages can reliably learn the type system of a language that
is new to them.

1 Provide a mechanism for seting data types with sufficient capability for the problem at hand.

Provide a way for the computation to determine the limits of the data types actually selected.

1 Language implementers should consider providing compiler switches or other tools to ptioeidighest
possible degree of checking for type errors.

=

6.4 Bit Representations [STR]

6.4.1 Description of application vulnerability

Interfacing with hardwaregther systems and protocols often requires access to one or more bits in a single
computer word, or access to bit fields that may cross computer words for the machine in question. Mistakes can
0S YIRS +ta (2 ¢KIG oAda I N#nmnésg 2% (1 ROSABNBOSaSDONUESES
of miscalculations Access to those specific bits may affect surrounding bits in ways that compromise their

integrity. This can result in the wrong information being read from hardwiaregrrect data or commands being

given, or information being mangled, which can result in arbitrary effects on components attached to the.system

6.4.2 Cross reference

JSF AV Ruléd7, 154 and 155

MISRA C 2004: 3.5, 6.4, 6.5, and 12.7

MISRA C++ 2008:0821, 52-4 to 52-9, and 95-1

CERT C guililees: EXP3&, INTOEC, INTOLC, INT1Z, INT1Z, and INTHE
AdaQualityand Style Guide: 7.6.1 throu@h6.9, and 7.3.1

30 © ISTIEC2012 ¢ All rights reserve

© 00 NO Ok WDN

e
N R O

13
14
15
16
17
18
19
20
21
22
23

24

25

26

27

28

29
30
31
32
33
34

35

36

Baseline Editiol2 TR 24772 WG 23/N @10

6.4.3 Mechanism of failure

Computer languages frequently provide a variety of sizes feger variables. Languages may support short,
integer, long, and even big integers. Interfacing with protocols, device drivers, embedded systems, low level
graphics or other external constructs may require each bit or set of bits to have a particulaingned hose bit
sets may or may not coincide with the sizes supported by a particular languatgamentation When they do

not, it is common practice to pack all of the bits into one word. Masking and shifting of the word using powers of
two to pick ou individual bits or using sums of powers of 2 to pick out subsets offbiteXample using
28=Z+2*+2* to create the mask 11100 and then shifting 2 bits) provides a way of extracting those bits.
Knowledge of the underlying bit storage is usually rextessary to accomplish simple extractions such as these.
Problems can arise when programmers mix their techniques to reference the bits or output théhifslems

can arise when programmers mix arithmetic and logical operations to reference the bisput the bits. The
storage ordering of the bits may not be what the programmer expects.

Packing of bits in an integer is not inherently problematic. However, an understanding of the intricacies of bit
level programming must be knowrSome computersroother devices store the bits left to right while others
store them right to left. The type of storage can cause problems when interfacing with external devices that
expect the bits in the opposite order. One problem arises when assumptions are madenidréacing with
external constructs and the ordering of the bits or words are not the same as the receiving entity. Programmers
may inadvertently use the sign bit in a bit field and then may not be aware that an arithmetic shift (sign
extension) is beig performed when right shifting causing the sign bit to be extended into other fields.
Alternatively, a left shift can cause the sign bit to be oBé& manipulations can also be problematic when the
manipulations are done on binary encoded records &@an multiple words. The storage and ordering of the
bits must be considered when doing bitwise operations across multiple words as bytes may be stored in big
endianor little-endianformat.

6.4.4 Applicable langua ge characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that allow bit manipulatians

6.4.5 Avoiding the vulnerability or mitigating its effects

Software developers can avdige vulnerability or mitigate its ill effects in the following ways:

1 Any assumption about bit ordering should be explicitly documented.

1 The way bit ordering is done on the host system and on the systems with which the bit manipulations will
be interfacedshould be understood.

i Bit fields should be used in languages that support them.

9 Bit operators should not be used on signed operands.

9 Localize and document the code associated with explicit manipulation of bits and bit fields.

6.4.6 Implications for standar dization

In future standardization activities, the following items should be considered:

© ISTIEC2012¢ All rights reserved 31

N

© 00 N O

10
11
12
13
14
15

16
17
18
19

20

21
22
23
24
25

26

27
28
29
30

31

32
33
34

35
36

WG 23/N @10 Baseline Edition 2TR 24772

9 For languages that are commonly used for bit manipulation&RI§Application Programming Interface)
for bit manipulatons that is independent of word size and machine instruction set should be defined and
standardized.

6.5 Floating -point Arithmetic [PLF]

6.5.1 Description of application vulnerability

Most real numbersannot be represented exactly in a computdio represent real numbers, most computers
uselEC 6055¢47], or the US equivalerANSI/IEEE Std 783b]. Furthermore he bit representation for a

floating-point number can vary from compiler to compiler and on different platfarhrmwvever elying on a

particular representation can cause problems when a different compiler is used or the code @& ogumsaother
platform. Regardless of the representation, many real numbers can only be approximated since representing the
real number using a binary representatioray wellrequire an endlessly repeating string of bits or more binary

digits than ae available for representation. Therefore it should be assumed that a fleptiim number is only

an approximation, even though it may be an extremely good one. Fleptimg representation of a real number

or a conversion to floatingoint can caussurprising results and unexpected consequences to those

unaccustomed to the idiosyncrasies of floatipgint arithmetic.

Many dgorithms that use floating point can have anomalous behaviour when used with certain values. The most
common results are errormis results or algorithms that never terminate for certain segments of the numeric
domain, or for isolated valuesThose without training or experience in numerical analysis may not be aware of
which algorithmsor, for a particular algorithm, of which dwainvaluesshould be the focus of attention.

6.5.2 Cross reference

JSF AV Rules: 146, 147, 184, 197, and 202

MISRA C 2004: 1.5, 12.13,3, and 13.4

MISRA C++ 2008483, 39-3, and 62-2

CERT C guililees: FLPOC, FPOL, FLPOZ and FLP3C
AdaQualty and Style Guides.5.6 and 7.2.1 througi.2.8

6.5.3 Mechanism of failure

Floatingpoint numbers are generally only an approximation of the actual valixg@ressedh base 10 world, the

@l t dzS 2 F ™k Bhe dame typeaf sitoation ocilirsthe binary world, but numbers that can be
represented with a limited number of digiis base 10such as 1/10=0.1 become endlessly repeating sequences
in the binary world. So 1/10 represented as a binary number is:

0.0001100110011001100110011001100AMA M A A MMAAMMA N MM X

2KAOK A& NFMKH b nfFMkKn b NFMKYy b MFMKMC b MFMKOH b
representation will still only be an approximation of 1/10. Therefore when adding 1/10 ten times, the final result
may or may not be eactly 1.

Accumulating floating point values through the repeated addition of values, particularly relatively small values,
can provide unexpected result&lsing an accumulated value to terminate a loop can result in an unexpected

32 © ISTIEC2012 ¢ All rights reserve

N o ok WODN P

(0]

10
11
12
13
14

15

16

17

18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

37

Baseline Editiol2 TR 24772 WG 23/N @10

number of iterations.Raunding and truncation can cause tests of floatp@int numbers against other values to
yield unexpected resultsAnother cause of floating point errors is reliance upon comparisons of floating point
values or the comparison of a floating point value vadro. Tests of equalityr inequality can vary due tdue to
rounding or truncation errors, which may propagate far from the operation of origin. Even comparisons of
constants may fail when a different rounding mode was employed bydnepiler and bythe application
Differences in magnitudes of floatifmgpint numbers can result in no change of a very large flogtivigt number
when a relatively small number is added to or subtracted fram it

Manipulating bits in floahg-point numbers is also very implementation dependemipically special

representations are specified for positive and negative zero and infinity. Relying on a particular bit representatior
is inherently problematic, especially when a new compiler is introduced or the code is reused on another
platform. The uncertainties ariggrfrom floatingpoint can be divided into uncertaiy about the actual bit
representation of a given valusuch asbigendian or littleendian) and the uncertaty arising from the rounding

of arithmetic operationsfor example the accumulation of errarwhen imprecise floatirgoint values are used

as loop indices).

6.5.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 All languages with floatirgoint variebles can be subject to rounding or truncation errors.
6.5.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Do not use a floatingoint expression in 8oolean test for equality. Instead, usedingthat determines
the difference between the two values to determine whether the difference is acceptably small enough
so that two values can be considered equal. Note that if the two values are very lé8ge,dhd Y I f f
Sy2dzakKé RAFTFSNBYyOS OFry o6S I @SNEBR fFNHS ydzyoSNO®

9 Use library functions with known numerical characteristics whenever possible.

1 Unless the use of floatiagoint is simplean expert in numerical analysis should check the stability and
accuracy of thalgorithm employed.

1 Avoid the use of a floatirgoint variable as a loop counter. If necessary to use a flogiigt value as a
loop control, use inequality to determine the loop contrtidt is,<, <=, > or >=).

1 Understand the floatingpoint format used to represent the floatingoint numbers. This will provide
some understanding of the underlying idiosyncrasies of flogbioigt arithmetic.

1 Manipulating the bit representation of a floatiFgpint number should not be done except with biitt
langua@ operators and functions that are designed to extract the mantissa and exponent.

91 Do not use floatingpoint for exact values such as monetary amounts. Use flogiiigt only when
necessary such as for fundamentally inexact values such as measurements.

1 Camsider the use of decimal floatiFgpint facilities when available.

6.5.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

© ISTIEC2012¢ All rights reserved 33

© 00 NO O WDN P

=
o

11

12
13
14
15

16
17
18
19

20
21

22
23
24
25

26

27
28
29
30
31
32

33

34
35
36

WG 23/N @10 Baseline Edition 2TR 24772

1 Languages that do not already adhere to or only adhere to a sub$eCo80559 [4ghould consider
adhering completely to the standard. Examples of standardization that should be considered:
0 C should consider requmg IEC 6055%or floating-point arithmetig rather than providing it as an
option, as is the case in ISBQ 98920114].
o Javashould consider fully adhering t&C 6055%stead of a subset.
9 Languages should consider providing a means to generate diagnostics for code that attempts to test
equality of two floating point values
1 Languages shoulansider standardizing their data type to ISO/IEC 1688994 andSO/IEC 10967
2:2001

6.6 Enumerator Issues [CCH

6.6.1 Description of application vulnerability

Erumerationsare a finite list of named entities that contain a fixed mapping from a set of names to a set of
integral values (called the representation) and an order between the members of the set. In some languages
there are no other perations available except order, equality, first, last, previous, and next; in others the full

dzy RSNI @Ay 3 NBLINBaSydalaGA2y 2 LISNI 42 N MéeBirato8 Af | 6f S

Most languages that provide enumeration types also ptevihnechanisms to set netefault representations. If
these mechanisms do not enforce whdige operations and check for conflicts then some members of the set
may not be properly specified or may have the wrong piags If the valuesetting mechanismsra positional
only, then there is a risk that improper counts or changes in relative order will result in an incorrect mapping.

For arrays indexed by enumerations with ro@fault representations, there is a risk of structures with holes, and
if those indexes can be manipulated numerically, there is a risk ofaftiound accesses of these arrays.

Most of these errors can be readily detected by static analysis tools with appropriate coding standards,
restrictions and annotationsSimilarly mismatches in emeration value specification can be detected statically.
Without such rules, errors in the use of enumeration types are computationally hard to detect statically as well as
being difficult to detect by human review.

6.6.2 Cross reference

JSF AV Rule: 145

MISRA C 2004:®@and 9.3

MISRA C++ 2008:533

CERT C guililees: INTOSC
Holzmanrrule 6

AdaQualityand Style Guide: 3.4.2

6.6.3 Mechanism of failure

As a program is developed and maintained the list of items in an enumeration often changes ibabice/ays:
new elements are added to the list; order between the members of the set often changes; and representation
(the map of values of the items) changexpressions that depend on the full set or specific relationships between

34 © ISTIEC2012 ¢ All rights reserve

10
11

12

13

14
15
16
17
18
19

20
21

22
23
24
25

26

27

28
29
30

31

32

33
34

Baseline Editiol2 TR 24772 WG 23/N @10

elements of the setan create value errors that could result in wrong results or in unbounded behaviours if used
as array indices.

Improperly mapped representations can result in some enumeration values being unreachable, or may create
GK2ft Sa¢ Ay (KS NBdsinBcarbof beldéfined siprapdg&aedS G| f

If arrays are indexed by enumerations containing1default representations, some implementations may leave
space for values that are unreachable using the enumeration, with a possibilinnetessarily large emory
allocationsor a way to pass information undetected (hidden channel).

When enumerators are set and initialized explicitly and the language permits incomplete initializers, then change:
to the order of enumerators or the addition or deletion of enurars can result in the wrong values being

assigned or default values being assigned improp&lybsequent indexingan result innvalidaccesses and

possibly unbounded behaviours.

6.6.4 Applicable language Characteristics

This vulnerability descriptiois intended to be applicable to languages with the following characteristics:

1 Languages that permit incomplete mappings between enumerator specification and value assignment, or
that provide a positionabnly mapping require additional static analysisl®and annotations to help
identify the complete mapping of every literal to its value.

9 Languages that provide a trivial mapping to a type such as integer require additional static analysis tools
to prevent mixed type errorsThey also cannot prevenmivdid values from being placed into variables of
such enumerator types. For example:

enum Directions {back, forward, stop};
enum Directions a = forward, b = stop, c = a + b;

In this example¢ may have a value not defined by the enumeration, and any furtiseras that
enumeration will lead to erroneous results.

1 Some languages provide no enumeration capability, leaving it to the programmer to define named
constants to represent the values and ranges.

6.6.5 Avoiding the vulnerability or mitigating its effect s

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

i Use static analysis tools that will detect inappropriate use of enumerators, such as using them as integers
or bit maps, and that detect enumeration defion expressions that are incomplete or incorrect. For
languages with a complete enumeration abstraction this is the compiler.

6.6.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

f Languagethat currently permit arithmetic and logical operations on enumeration types could provide a
mechanism to ban such operations progravite.

© ISTIEC2012¢ All rights reserved 35

10
11
12
13

14
15
16
17

18
19

20

21
22
23
24
25

26

27
28

29
30
31

32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

1 Languages that provide automatic defaults or that do not enforce static matching between enumerator
definitions andnitialization expressions could provide a mechanism to enforce such matching.

6.7 Numeric Conversion Errors [FLQ

6.7.1 Description of application vul nerability

Certain contexts in various languages may require exact matches with respect to3gpes [

aVar := anExpression
valuel + value2
foo(argl, arg?2, ar g3, e ar gN)

Type conversion seeks to follow these exact match rules while allowing progranoneedlexibility in using

values such as: structuraljguivalent types in a namequivalent language, types whose value ranges may be
distinct but intersect (for example, subranges), and distinct types with sensible/meaningful corresponding values
(for example, integers and floats)Explicit conversions are callggpe casts An implicit type conversion between
compatible but not necessarily equivalent types is catljged coercion

Numeric conversions can leadadoss of data, if the target representation is not capable of representing the
original value. For example, converting from an integer type to a smaller integer type can result in truncation if
the original value cannot be represented in the smalle sizd converting a floating point to an integer can

result in a loss of precision or an eaftrange value.

Type conversion errors can lead to erroneous data being generated, algorithms that fail to terminate, array
bounds errors, and arbitrary program exgion.

6.7.2 Cross reference

CWE:
192. Integer Coercion Error
MISRA C 20040.1-10.6, 11.311.5, and 12.9
MISRA C++ 2008:13-3, 50-3, 50-4, 50-5, 50-6, 50-7, 50-8, 50-9, 50-10, 52-5, 52-9, and 53-2
CERT C guiliimes: FLP3€, INTOZ, INTO&C, INT34C, and INT3E&

6.7.3 Mechanism of failure

Numericconversion errorsesults in data integrity issugbut they may also result in a number of safety and
security vulnerabilities

Vulnerabilities typically occur when appropriate range checkimgtigperformed, andunanticipatedvalues are
encountered. These can result in safety issues, for examvplernthe Ariane Hauncherfailure occurred due to
an improperly handled conversion error resulting in the processor being shutf2gjn

Conversiorerrors can also result in security issuds attackermay input gparticular numeric valuéo exploit a
flaw in the program logicThe resulting erroneous value may then be used as an array,indegp iteratora
length, a sizestate data, or in some other security critical manndfor example, a truncated integer value may

36 © ISTIEC2012 ¢ All rights reserve

N

o O AW

10
11
12

13

14

15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33

34
35
36
37
38

Baseline Editiol2 TR 24772 WG 23/N @10

be used to allocate memory, while the actual length is used to copy information to the newly allocated memory,
resulting in a buffer overfloy30].

Numerictype caversionerrorsoften lead to undefined states of execution resulting in infinite loops or crashes.
In some cases, integéype conversiorerrors can lead to exploitable buffer overflow conditions, resulting in the
execution of arbitrary code. Integéype conversiorerrors result in an incorrect value being stored for the
variable in question.

6.7.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

Languages thtgoerform implicit type conversion (coercion).

Weakly typed languages that do not strictly enforce type rules.
Languages that support logical, arithmetic, or circular shiftenteger values
Languages that do not generate exceptions on problematic exsions.

=A =4 =4 =4

6.7.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 The first line of defense against integer vulnerabilities should be range checking,eifiiitly or
through strong typing. All integer values originating from a source that is not trusted should be validated
for correctness. However, it is difficult to guarantee that multiple input variables cannot be manipulated
to cause an error to oce in some operation somewhere in a progr§sg].

1 An alternative or ancillary approach is to protect each operatidowever, because of the large number
of integer operations that are susceptible to these problems and the number of checks required to
prevent or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive
to implement.

1 A language that generates exceptions on erroneous data conversions might be cBasegn objects
and program flow such that multiple @omplex casts are unnecessaBmsure that any data type casting
that you must use is entirely understood to reduce the plausibility of error in use.

9 The use of static analysis can often identify whether or not unacceptable numeric conversions will occur

Verifiably inrange operations are often preferable to treating out of range values as an error condition because
the handling of these errors has been repeatedly shown to cause dafrsgirvice problems in actual

applications. Faced with a numeric e@nsion error, the underlying computer system may do one of two things:
(a) signal some sort of error condition, or (b) produce a numeric value that is within the range of representable
values on that system. The latter semantics may be preferable in stoaions in that it allows the computation

to proceed, thus avoiding a deniaif-service attack. However, it raises the question of what numeric result to
return to the user.

A recent innovation fromSO/IEC TR 24731 13] is the definition of thasize _t type for the Gorogramming
language 9 EG NBYSt & t I NBS 202800 aAil $§a | NB T NikdrrdeByyRof & |
example, negative numbers appear as very large positive numbers edmerted to arunsigned type like

size_t . Also, some implementations do not suppoldjects as large as the maximum value that can be
represented by typsize t . Forthesereasons, it is sometimes beneficial to restrict the range of object sizes to

© ISTIEC2012¢ All rights reserved 37

a s wWNPF

(o]

10
11

12

13

14
15
16

17

18
19
20

21

22
23
24
25
26

27
28
29

30

31

32
33

WG 23/N @10 Baseline Edition 2TR 24772

deted programming errorsFor implementations targeting machines with large address sp#dss,
recommended thaRSIZE_MAXbe defined as the smaller of the size of the largagect supported or
(SIZE_MAX >>1) , even if this limit is smaller than the siaksome legitimate, but very large, objects.
Implementations targeting machines with smadldress spaces may wish to defR8IZE_MAXasSIZE_MAX
which means that therés no object size that is considered a runtigmnstraint violation.

6.7.6 Implicatio ns for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should consider providing means similar to the ISO/IEC TRL2#EfB1tion ofrsize_t
type for Cto restrict object sizes so as to expose gnamming errors.

1 Languages should consider making all type conversgpiicit or at least generating warnings for implicit
conversions where loss of data might occur.

6.8 String Termination [CIM

6.8.1 Description of application vulnerability

Some programming languages use a termination character to indicate the end of a string. Relying on the
occurrence of the string termination character without verification tead to either exploitation or unexpected
behaviour

6.8.2 Cross reference

CWE:
170. Improper Null Termination
CERT C guililees: STRG&, STR3C, STR3Z, and STR36

6.8.3 Mechanism of failure

String termination errors occur when the termination chaeads solely relied upon to stop processing on the
stringandthe termination character is not present. Continued processing on the string can cause an error or
potentially be exploited as a buffer overflow. This may occur as a result of a programikiagran assumption

that a string that is passed as input or generated by a library contains a string termination character when it does
not.

Programmers may forget to allocate space for the string termination character and expect to be able to store an
length character string in an array thatnigharacters long. Doing so may work in some instances depending on
what is stored after the array in memory, but it may fail or be exploited at some point.

6.8.4 Applicable language characteristics
This vulnerallity description is intended to be applicable to languages with the following characteristics:

1 Languages that use a termination character to indicate the end of a string.
I Languages that do not do bounds checking when accessing a string or array.

38 © ISTIEC2012 ¢ All rights reserve

AW

(o]

10

11

12

13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31

32

33

Baseline Editiol2 TR 24772 WG 23/N @10

6.8.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Do not rely solely on the string termination character.
1 Use library calls that do not rely on string termiion characters such asrncpy instead ofstrcpy in
the standard C library.

6.8.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Eliminating library calls #t make assumptions about string termination characters.
1 Checking bounds when an array or string is accessed.
1 Specifying a string construct that does not need a string termination character.

6.9 Buffer Boundary Violation (Buffer Overflow) [HCBH]

6.9.1 Description of application vulnerability

A buffer boundary violatioarises when, due to unchecked array indexing or unchecked array copying, storage

outside the buffer is accessetlisually boundary violations describe the situation where such storage is then

written. Depending on wheréhe buffer is located, logically unrelated portions of the stack or the heap could be
modified maliciously or unintentionallyJsually, buffer boundary violations are accesses to contiguous memaory

beyond either end of the buffer data, accessing beforelibginning or beyond the end of the buffer data is
equally possible, dangerous and maliciously exploitable.

6.9.2 Cross reference

CWE:

MHN® . dZFFSNJ O2L) 6AGK2dzi / KSO1Ay3a {Al S 27F Ly Lz

122. Heaphased Buffer Overflow

124.Boundary SIAYYAY I +A2fFdA2y oW. dzZFFSNI ! yRSNBNRGSQO

129. Unchecked Array Indexing
131 Incorrect Calculation of Buffer Size
787. Out-of-bounds Write
805. Buffer Access with Incorrect Length Value
JSF AV Rule: 15 and 25
MISRA C 2004: 21.1
MISRA C++ 2008:615 to 50-18
CERT C guidelines: ARR3AARR3EZ, ARR3E, ARR3E&, MEM3EC and STR3T

6.9.3 Mechanism of failure

The program statements that cause buffer boundary violations are often difficult to find.

© ISTIEC2012¢ All rights reserved 39

N B

© 00N 01 W

10
11
12
13
14
15
16
17

18

19

20
21
22
23
24
25
26
27

28

29

30
31
32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

There are several kinds of failures (in all cases an ércemay be raised if the accessed location is outside of
some permitted range of the rutime environment):

il

A read access will return a value that has no relationship to the intended value, such as, the value of
another variable or uninitialized storage.

An outof-bounds read access may be used to obtain information that is intended to be confidential.
A write access will not result in the intended value being updated and may result in the value of an
unrelated object (that happens to exist at the givearage location) being modifiedncluding the
possibility of changes in external devices resulting from the memory location being hardveaed.
When an array has been allocated storage on the stack aofdobunds write access may modify
internal runtime housekeeping information (for example, a function's return address) which might change
I LINP3INIYQa O2yiGNRBE Ff2060

An inadvertent or malicious overwrite of function pointers that may be in meneaysinghem to point

to an unexpected location dhe attacker's code Even in applications that do not explicitly use function
pointers, the runtime will usually store pointers to functions in memofryor example, object methods in
objectoriented languages are generally implemented using function pointeasdata structure or
structures that are kept in memoryThe consequence of a buffer boundary violation can be targeted to
cause arbitrary code execution; this vulnerability may be used to subvert any security service.

6.9.4 Applicable language character istics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1

Languages that do not detect and prevent an array being accessed outside of its declared bounds (either
by means of an index or by pointgr

Languages that do not automatically allocate storage when accessing an array element for which storage
has not already been allocated.

Languages that provide bounds checking but permit the check to be suppressed.

Languages that allow a copy or move mg®n without an automatic length check ensuring that source

and target locations are of at least the same size. The destination target can be larger than the source
being copied.

6.9.5 Avoiding the vulnerability or mitigating its effects

Software devealpers can avoid the vulnerability or mitigate its ill effects in the following ways:

)l

Use of implementatiofprovided functionality to automatically check array element accesses and prevent
out-of-bounds accesses.

Use of static analysis to verify that alfay accesses are within the permitted bounds. Such analysis may
require that source code contain certain kinds of information, such as, that the bounds of all declared
arrays be explicitly specified, or that piend postconditions be specified.

1 Using the physical memory address to access the memory location.

40

© ISQIEC2012 ¢ All rights reserve

N

0 ~NOoO 01 bW

10
11
12

13

14

15
16
17
18
19
20
21
22

23

24

25
26

27

28
29
30
31
32
33
34

Baseline Editiol2 TR 24772 WG 23/N @10

1 Sanity becks should be performed on all calculated expressions used as an array index or for pointer
arithmetic.

Some guideline documents recommend only using variables having an unsigned data type when indexing an
array, on the basis that an unsigned data type oever be negative. This recommendation simply converts an
indexing underflow to an indexing overflow because the value of the variable will wrap to a large positive value
rather than a negative one. Also some languages support arrays whose lowerib@radter than zero, so an
index can be positive and be less than the lower bouadme languages support zeszed arrays, so any
referenceto a location within such an array is invalid.

In the past the implementation of array bound checking has somext incurred what has been considered to be

a high runtime overhead (often because unnecessary checks were performed). It is now practical for translators
to perform sophisticated analysis that significantly reduces the runtime overhead (because rehtcles are

only made when it cannot be shown statically that no bound violations can occur).

6.9.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Languages should provide safe copying odysras buiin operation.

1 Languages should consider only providing array copy routines in libraries that perform checks on the
parameters to ensure that no buffer overrun can occur.

1 Languages should perform automatic bounds checking on accesses tolaments unless the compiler
can statically determine that the check is unnecessdilyis capability may need to be optional for
performance reasons.

1 Languages that use pointer types should consider specifying a standardized feature for a pointerttype tha
would enable array bounds checking.

6.10 Unchecked Array Indexing [XYZ]

6.10.1 Description of application vulnerability

Unchecked array indexing oasuwhena value is used as an index into an array without checking that it falls
within the acceptable index range

6.10.2 Cross reference

CWE:
129. Unchecked Array Indexing
JSF AV Rules: 164 and 15
MISRA C 2004: 21.1
MISRA C++ 2008:(615 to 50-18
CERT guiddéines: ARR3C, ARR3EZ, ARR3&, and ARR38
AdaQualityand Style Guide: 5.5.1, 5.5.2, 7.6.7, and 7.6.8

© ISTIEC2012¢ All rights reserved 41

© 00 NO Ok WDN

e~ ol =
O > wWNPRFR O

16
17
18
19
20
21
22

23
24
25
26
27

28

29

30
31

32
33
34

35
36

WG 23/N @10 Baseline Edition 2TR 24772

6.10.3 Mechanism of failure

A single fault could allow both an overflow and underflow of the array indexindex overflow exploit might use
buffer overflow techniques, but this can often be exploited without having to provide "large inpéatsay index
overflows can also trigger owif-bounds read operations, or operations on the wrong objeittat is, "buffer
overflows" are not always theesult. Unchecked array indexing, depending on its instantiation, can be responsible
for any number of related issue$dost prominent of these possible flaws is the buffer overfloandition,with
consequences ramgg from denial d service, and data corruption, to arbitrary code executidime most

common situation leading to unchecked array indexing is the use of loop index variables as buffer itfdbees.
end condition for the loop is subject to a flaw, the index can groshoink unbounded, therefore causing a
buffer overflow or underflow.Another common situation leading to this condition is the use of a function's
return value, or the resulting value of a calculation directly as an index in to a bulfehecked arraindexing

can result in the corruption of relevant memory and perhaps instructions, lead to the program halting, if the
values are outside of the valid memory ardithe memory corrupted is data, rather than instructions, the
system might continue to fustion with improper valueslf the corrupted memory can be effectively controlled, it
may be possible to execute arbitrary code, as with a standard buffer overflow.

Language implementations might or might not statically detect out of bound access andigeaecompiletime
diagnostic. At runtime the implementation might or might not detect the-of-boundsaccess and provide a
notification. The natification might be treatable by the program or it might not be. Accesses might violate the
bounds of theentire array or violate the bounds of a particuladex It is possible that the former is checked and
detected by the implementation while the latter is nothe information needed to detect the violation might or
might not be available depending on tkhentext of use.(For example, passing an array to a subroutine via a
pointer might deprive the subroutine of information regarding the size of the array.)

Aside from bounds checking, some languages have ways of protecting agai$toundsaccessse. Some

languages automatically extend the bounds of an array to accommodate accesses that might otherwise have been
beyond the bounds. However, this may or may not match the programmer's intent and can mask errors. Some
languages provide for whole arraperations that may obviate the need to access individual elements thus
preventing unchecked array accesses.

6.10.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characderisti

1 Languages that do not automatically bounds check array accesses.
9 Languages that do not automatically extend the bounds of an array to accommodate array accesses.

6.10.5 Avoiding the vulnerability or mitigating its effects
Software developers can avdige vulnerability or mitigate its ill effects in the following ways:
1 Include sanity checks to ensure the validity of any values used as index variables.

1 The choice could be made to use a language that is not susceptible to these issues.
1 When available, usehole array operations whenever possible.

42 © ISTIEC2012 ¢ All rights reserve

=

N

0o ~NOo Ol AW

10

11
12

13

14
15
16
17
18
19
20

21

22
23
24

25
26
27
28
29

30

31

32
33

Baseline Editiol2 TR 24772 WG 23/N @10

6.10.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languagsshould consider providing compiler switches or other tools to check the size amii®of
arrays and their extents that are statically determinable.

1 Languages should consider providing whole array operations that may obviate the need to access
individual elements.

1 Languages should consider the capability to generate exceptions or atitathaextend the bounds of
an array to accommodate accesses that might otherwise have been beyond the bounds.

6.11 Unchecked Array Copying [XYW]

6.11.1 Description of application vulnerability

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amount being copied is greater than is allocated for the destination buffer.

6.11.2 Crossreference

CWE:
121.Stackbased Buffer Overflow
JSF AV Rule: 15
MISRA C 2004: 21.1
MISRA C++ 2008:0615 to 50-18
CERT C guililees: ARR3E and STR3T
AdaQualityand Style Guide: 7.6.7 and 7.6.8

6.11.3 Mechanism of failure

Many languages and some tthiparty libraries provide functions that efficiently copy the contents of one area of
storage to another area of storage. Most of these libraries do not perform any checks to ensure that the copied
from/to storage area is large enough a@commodatehe amount of data being copied.

The arguments to these library functions include the addresses of the contents of the two storage areas and the
number of bytes (or some other measure) to cofassing the appropriate combination of incorrect start
addresse®r number of bytes to copy makes it possible to read or write outside of the storage allocated to the
source/destination area. When passed incorrect parameters the library function performs one or more
unchecked array index accesses, as described in dketiéArray IndexinpXYZ]

6.11.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that contastandardlibrary functions for performing bulk copyirg storage areas.
1 The same range of languages having the characteristics listed in Unchecked Array [péx]ng

© ISTIEC2012¢ All rights reserved 43

=

© 00 NO Ol AW

10

11

12
13
14

15

16

17
18
19
20
21

22

23

24
25
26
27
28
29
30
31
32

WG 23/N @10 Baseline Edition 2TR 24772

6.11.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effectisarfdallowing ways:

1 Only use library functions that perform checks on the arguments to ensure no buffer overrun can occur
(perhaps by writing a wrapper for the Standard provided functioR&tform checks on the argument
expressions prior to calling theg®idard library function to ensure that no buffer overrun will occur.

1 Use static analysis to verify that the appropriate library functions are only called with arguments that do
not result in a buffer overrun. Such analysis may require that source codairt@ertain kinds of
information, for example that the bounds of all declared arrays be explicitly specified, or thatgore
postconditions be specified as annotations or language constructs.

6.11.6 Implications for standardization
In future standardiationactivities the following items should be considered:

1 Languages should consider only providing libraries that perform checks on the parameters to ensure that
no buffer overrun can occur.
1 Languages should consider providing full array assignment.

6.12 Pointer Casting and Pointer Type Changes [HFC]

6.12.1 Description of application vulnerability

The code produced faaccess via a data or function pointer requires that the type of the pointer is appropriate
F2NJ GKS RFEGF 2NJ FdzyOlAaz2y o0SAy3 | OOSaasSRo hi KSNBAAS
RIGE LRAYGSNE Aa RSTAQBRE (12K NBdzHRF SHiOKG 2IN2 By @ NBE A YRR
RSFTAYSR (2 0SS aAy@20lGA2y AYRANBOGte& GKNRddAK GKIFG L
GFLILIINBLINRF GS¢ eSS Yre GFENEB FY2y3 fFy3dz3Sao

Even if the type of the pointesiappropriate for the access, erroneous pointer operations can still cause a fault.
6.12.2Cross reference

CWE
136. Type Errors
188. Reliance on Data/Memory Layout
JSF AV Rules: 182 and 183
MISRA C 2004: 11.1,11.2,11.3,11.4, and 11.5
MISRA C++ 2008:2-2 to 52-9
CERT C guililees: INT14C and EXP3a
Hatton 13: Pointer casts
AdaQualityand Style Guide: 7.6.7 and 7.6.8

44 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N @10

6.12.3 Mechanism of failure

LT | LRAYIGSNRa GeLlsS Aa y20 FLILINBLNAREFGS T2 NgivadySan R (
be broken by inappropriate read or write operation using the indirection provided by the pointer VAliib.a

suitable type definition, large portions of memory can be maliciously or accidentally modified or read. Such
modification of data bjects will generally lead to value faults of the applicatiddodification of code elements

such as function pointers or internal data structures for the support of oleentation can affect control flow.

0 N Ok WDN

10

11
12

13
14
15
16
17
18

19
20

21

22

23
24

25

26

27
28

29

30
31

32
33

This can make the code susceptible to taggkattacks by causing invocation via a poirtefunction that has

0SSy Yl yALMz I G SR lrgalicloliskoddi G2 Fy Fadl O SNRa
6.12.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languageghétfollowing characteristics:

f Pointers (and/or references) can be converted to different pointer types.
f Pointers to functions can be converted to pointers to data.

6.12.5 Avoiding the vulnerability or mitigating its effects
Software developers can avdige vulnerability or mitigate its ill effects in the following ways:

T ¢NBFG G§KS O 2c6mddiod Wihings biZsarigus &idds.

1 Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions.

For exampleconsider the rules itemized above from JSH®Y, CERT [11] Hatton[18], or MISRA C

[12].

1 Other means of assurance might include proofs of correctness, analysis with tools, verification

techniguesor other methods

6.12.6 Implicatio ns for standardization

In future standardizatiomctivities the following items should be considered:

1 Languages should consider creating a mode that provides a runtime check of the validity of all accessed

objects before the object is read, written or exded.

6.13 Pointer Arithmetic [RV(G

6.13.1 Description of application vulnerability

Using pointer arithmetic incorrectly caasult inaddresing arbitrary locatons, which in turn can cause a program

to behave in unexpected ways.
6.13.2 Cross reference

JSF AV Rule: 215
MISRA C 20047.1,17.2,17.3, and 17.4

MISRA C++ 2008:(615 to 50-18
CERT C guililees: EXPOE

© ISTIEC2012 ¢ All rights reserved

45

10

11
12
13

14

15

16

17

18
19

20

21
22
23
24
25

26

27
28
29

WG 23/N @10 Baseline Edition 2TR 24772

6.13.3 Mechanism of failure
Pointer arithmeticused incorrectly can produce:

9 Addressing arbitrary memory locatigrniacluding buffer underflow and overflow.
9 Arbitrary code execution.
1 Addressing memory outside the range of the program

6.13.4 Applicable language characteristics

This vulnerability desiption is intended to be applicable to languages with the following characteristics:

9 Languages that allow pointer arithmetic.

6.13.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate itdfélots in the following ways:

9 Avoid using pointer arithmetic for accessing anything except compbygies
1 Prefer indexing for accessing array elements rather than using pointer arithmetic
9 Limit pointer arithmetic calculations to the addition and subtrae of integers.

6.13.6 Implications for standardization
[None]

6.14 Null Pointer Dereference [XYH]

6.14.1 Description of application vulnerability

A rull-pointer dereference takes place when a pointer with a valudlbiLLis used as though it pointed to a valid
memory locationThis is a special case of accessing storage via an invalid pointer.

6.14.2 Cross reference

CWE:

476. NULPointer Dereference
JSF AV Rule 174
CERT C guiliiees: EXP3€C
AdaQualityand Style Guide: 5.4.5

6.14.3 Mechanism of failure

When apointer with a value oNULLis used as though it pointed to a valid memory location, then apuiliter
dereference is gd to take place. Thisanresult in a segmentation fault, unhandled exceptionaocessing
unanticipated memory locations.

46 © ISTIEC2012 ¢ All rights reserve

10

11
12

13

14

15
16
17
18

19
20

21
22
23
24
25

26

27
28
29
30

Baseline Editiol2 TR 24772 WG 23/N @10

6.14.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with tloavfiolj characteristics:

1 Languages that permit the use of pointers and that do not check the validity of the location being
accessed prior to the access.
1 Languages that allow the use oN&JLL pointer.

6.14.5 Avoiding the vu Inerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
9 Before dereferencing a pointer, ensure it is not equaNtdLL

6.14.6 Implications for standardization

In future stand@rdizationactivities the following items should be considered:

1 Alanguagédeaturethat would check a pointer valutor NULLbefore performinganaccesshould be
considered.

6.15 Dangling Reference to Heap [XYK]

6.15.1 Description of application vulnerability

A dangling reference is a reference to an object whose lifetime has ended due to explicit deallocation or the stack

frame in which the objeatesided has been freed due to exiting the dynamic scddee memory for the object
may be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location
of memory, corrupting data or code.

This description coneas the former case, dangling references to the he@pe description of dangling
references to stack frames[IBCM. In many languages references are called pointers; the issues are identical.

A notable special case of using a dangling referéncalling a deallocator, for exampfege(), twice on the
samepointervalue { dzOK | a52dz0f S CNBSE¢ YIF & O2NNYzLIW Ay dSNYI €
leading to faulty application behaviour (such as infinite loops withe allocator, returning the same memory
repeatedly as the result of distinct subsequent allocations, or deallocating memory legitimately allocated to
another request since the firgtee() call, to name but a few), or it may have no adverse effectslat al

Memory corruption through the use of a dangling reference is among the most difficult of errors to locate.

With sufficient knowledge about the heap management scheme (often provided b H@perating Systengr
run-time system), use of dangling ezénces is an exploitable vulnerability, since the dangling reference provides
a method with which to read and modify valid data in the designated memory locations after freed memory has
been reallocated by subsequent allocations.

© ISTIEC2012¢ All rights reserved 47

0 N Ok WDN

10
11
12
13
14
15

16
17
18
19

20
21

22
23
24

25
26
27
28
29
30

31

32

33
34
35
36

WG 23/N @10 Baseline Edition 2TR 24772

6.15.2 Cross reference

QWE:
415. Double Free (Note that Double Free (415) is a special case of Use After Free (416))
416. Use After Free

MISRA C 2004: 1761

MISRA C++ 2008:391, 7-5-1, 7-5-2, 7-5-3, and 184-1

CERT C guililees: MEM01C, MEM36C, and MEM31.C

AdaQualityand Syle Guide: 5.4.5, 7.3.3, and 7.6.6

6.15.3 Mechanism of failure

The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved
for it. An object exists and retains its lestbred value throughout its lifetien If an object is referred to outside of

its lifetime, the behaviour is undefinedExplicit deallocation of heagllocated storage ends the lifetime of the
object residing at this memory location (as does leaving the dynamic scope of a declared vafiabledlue of a
pointer becomes indeterminate when the object it points to reaches the end of its lifetime. Such pointers are
called dangling references.

The use of dangling references to previously freed memory can have any number of adverse consaguence
ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and

timing of the deallocation causing all remaining copies of the reference to become dangling, of the system's reuse

of the freed memory, andf the subsequent usage of a dangling reference.

Like memory leaks and errors due to doubleallecation, the use of dangling references has two common and
sometimes overlapping causes:

1 An error condition or other exceptional circumstandleat unexpecedly cause an object to become
undefined
91 Developer confusion over which part of the program is responsible for freeing the memory.

If a pointer to previously freed memory is used, it is possible that the referenced memory has been reallocated.
Therefore assignment using the original pointer has the effect of changing the value of an unrelated variable.
This induces unexpected behaviour in the affected progrirthe newly allocated data happens to hold a class
description, in an objeepriented langage for example, various function pointers may be scattered within the
heap data.If one of these function pointers is overwritten with an address of malicious code, execution of
arbitrary code can be achieved.

6.15.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that permit the use of pointers and that permit explicit deallocation by the developer or
provide for alternative means to reallocate mem still pointed to by some pointer value

1 Languages that permit definitions of constructs that can be parameterized without enforcing the
consistency of the use of parameter at compile time.

48 © ISTIEC2012 ¢ All rights reserve

N

© 00 N 01 W

10
11
12
13
14
15
16
17
18

19

20

21
22
23
24
25
26
27
28
29

30

31

32
33

34
35
36

Baseline Editiol2 TR 24772 WG 23/N @10

6.15.5 Avoiding the vulnerability or mitigating its effects

Sdtware developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1

Use an implementation that checks whether a pointer is used that designates a memory location that has
already been freed.

Use a coding style that does not p&t deallocation.

In complicated error conditions, be sure that cleagmroutines respect the state of allocation properly.

the language is objedairiented, ensure that object destructors delete each chunk of memory only once.
Ensuring that all points are set tdNULLonce the memory they point to have been freed can be an
effective strategy.The utilization of multiple or complex data structures may lower the usefulness of this
strategy.

Use a static analysis tool that is capable of detecting sdtaat®ns when a pointer is used after the

storage it refers to is no longer a pointer to valid memory location.

Allocating and freeing memory in different modules and levels of abstraction burdens the programmer
with tracking the lifetime of that block ahemory. This may cause confusion regarding when and if a
block of memory has been allocated or freed, leading to programming defects such as-fieable
vulnerabilities, accessing freed memory, or dereferen®ll_L pointers or pointers that are not

initialized. To avoid these situations, it is recommended that memory be allocated and freed at the same
level of abstraction, and ideally in the same code module.

6.15.6 Implications for standardization

In future standardizatiomctivities the following itens should be considered:

1

6.16

Implementations of the free function could tolerate multiple frees on the same reference/pointer or frees
of memory that was never allocated.

Language specifiers should design generics in such a way that any attempt to instigtateric with
constructs that do not provide the required capabilities results in a contipile error.

For properties that cannot be checked at compile time, language specifiers should provide an assertion
mechanism for checking properties at rtime. It should be possible to inhibit assertion checking if
efficiency is a concern.

A storage allocation interface should be provided that will allow the called function to set the pointer
used to NULL after the referenced storage is deallocated.

Arithmet ic Wrap -around Error [FIF]

6.16.1 Description of application vulnerability

Wrap-around errors can occur whenever a value is incremented paghdeémum or decremented past the
minimum value representable in its type and, depending upon

il
f
il

whether the type is signed or unsigned
the specification of the language semantics and/or
implementation choices,

© ISTIEC2012¢ All rights reserved 49

© 00 N O O b~

10

11

12
13
14
15

16
17
18
19

20

21
22
23
24
25
26

27

28

29

30

31

32

WG 23/N @10 Baseline Edition 2TR 24772

"wraps around" to an unexpected valuEhis vinerability is related tdJsing Shift Operations for Multiplication
and DivisiorjPIKE.

6.16.2 Cross reference

CWE:

128. Wraparound Error

190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11
MISRA €+ 2008: 2.3-3, 50-3 to 50-10, and 519-1
CERT C guidelines: INTBONT3ZC, and INT3€

6.16.3 Mechanism of failure

5dzS (G2 K2g INAGKYSGAO A& LISNF2N¥YSR o0& O2YLWzi SNEZ AT
representable in its typahe system may fail to provide an overflow indication to the progradme of the most
O02YY2y LINPOSaa2NJ 0SKIF@A2dzNJ Aa (2 daéoN¥LX (G2 GSNE f
underflow, or saturate at the largest representable valu

Wrap-around often generates an unexpected negative value; this unexpected value may cause a loop to continue
for a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation. A wrajaround can sometimes trigger buffer overflows that can be used to execute arbitrary
code.

It should be noted that the precise consequences of waeqund differ depending on:

1 Whether the type is signed or unsigned

1 Whether the type is a modulus type

T WhetherKS (&81LJ5Q& NIy3dS Aad @Azt SR 68 SEOSSRAy3 (K¢
the minimum representable value

1 The semantics of the language specification

1 Implementation decisions

However, in all cases, the resulting problem is that thHee'gielded by the computation may be unexpected.

6.16.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that do not trigger an exception conditidren a wraparound error occurs.

6.16.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

2 This description isatived from WrapAround Error [XYY], which appeared in Edition 1 of this international technical report.

50 © ISTIEC2012 ¢ All rights reserve

W NP

~N O

10

11
12

13

14
15
16
17
18
19
20

21

22
23

24
25
26

27

28

29

Baseline Editiol2 TR 24772 WG 23/N @10

1 Determine applicable upper and lower bounds for the rangellofaaiables and use language mechanisms
or static analysis to determine that values are confined to the proper range.
1 Analyze the software using static analysis looking for unexpected consequences of arithmetic operations.

6.16.6 Implications for standa rdization
In future standardization activities, the following items should be considered:
i Language standards developers should consider providing facilities to specify either an error, a saturated
value, or a modulo result when numeric overflow occudeally, the selection among these alternatives

could be made by the programmer.

6.17 Using Shift Operations for Multiplication and Division [PIK]

6.17.1 Description of application vulnerability

Using shift operations as a surrogate for multiply or divide may produce an unexpected valuéhe/tsggm bit is
changed or when value bits are lo§this vulnerability is related to Arithmetic Wreground Error [FIE]

6.17.2 Cross reference

CWE:

128. Wraparound Error

190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11
MISRA C++ 2008:13-3, 50-3 to 50-10, and 519-1
CERT C guidelines: INTGONT3ZC, and INT3€

6.17.3 Mechanism of failure

Shift operations intended to produce results equivalent to multiplication or division fail to produce correct results
if the shift operation affects theign bit or shifts significant bits from the value.

Such error®ften generate an unexpected negative value; this unexpected value may cause a loop to continue for
a long time (because the termination condition requires a value greater than some positisg) @r an array
bounds violation.The errorcan sometimes trigger buffer overflows that can be used to execute arbitrary code.

6.17.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages witlolloafng characteristics:

1 Languages that permit logical shift operations on variables of arithmetic type.

3This description is derived from Wrapound Error [XYY], which appeared in Edition 1 of this international technical report.

© ISTIEC2012¢ All rights reserved 51

N

~No ok~ w

10

11

12

13

14

15
16
17
18

19

20
21
22
23
24
25

26

27

28
29
30

WG 23/N @10 Baseline Edition 2TR 24772

6.17.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the fioigpways:

1 Determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range.

1 Analyze the software using static analysis looking for unergexbnsequences of shift operations.

1 Avoid using shift operations as a surrogate for multiplication and divisost compilers will use the
correct operation in the appropriate fashion when it is applicable.

6.17.6 Implications for standardization
Infuture standardization activities, the following items should be considered:
1 Not providing logical shifting on arithmetic values or flagging it for reviewers.

6.18 Sign Extension Error [XZI]

6.18.1 Description of application vulnerability
Extending a signed variable that holds a negative valuepr@aucean incorrect result.
6.18.2 Cross reference

CWE:

194. Incorrect Sign Extension
MISRA C++ 2008:054
CERT guidéines: INT13C

6.18.3 Mechanism of failure

Converting a signed data type to a larger data type or pointer can cause unexpected behaviour due to the
extension of the sign bit. Aegativedata element that is extendedith an unsigned extension algthm will

produce an incorrect result-or instance, this can occur when a signed character is converted to a type short or a
signed integer (3Dit) is converted to an integer type long (Bit). Sig extension errors calead tobuffer

overflows and ther memory based problemsThis can occur unexpectedly when moving software designed and
tested on a 32it architecture to a 64it architecture computer.

6.18.4 Applicable language characteristics

This vulnerability description is intended to be apalile to languages with the following characteristics:

i Languages that are weakly typed due to their lack of enforcement of type classifications and interactions.
1 Languages that explicitly or implicitly allow applying unsigned extension operations to sigfitéxk or
vice-versa.

52 © ISTIEC2012 ¢ All rights reserve

N

D 01~ W

10

11

12

13
14
15
16
17

18
19
20

21
22

23
24
25
26
27

28
29
30
31
32
33

34
35

Baseline Editiol2 TR 24772 WG 23/N @10

6.18.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use a sign extension libraistandard functionor appropriate languagspecific coding method®
extend signed values.

9 Use static analysis tools to help locate situations in which the conversion of variables might have
unintended consequences.

6.18.6 Implications for standardization
In future standardization activities, tHellowing items should be considered:

1 Language definitions shouttéfine implicit and explicit conversions in a way that prevents alteration of
the mathematical value beyond traditional rounding rules

6.19 Choice of Clear Names [NAI]

6.19.1 Description of application vulnerability

Humanssometimeschoose similar or identical names for objects, types, aggregates of types, subprograms and
modules. They tend b use characteristidhat are specific to the native language of the software develdper

aid in this effort, such as use of mixedsing, underscores and periods,use of plural and singular forms to
support the separation of items with similar namesimilarly, development conventions sometimes use casing
for differentiation for example all uppercase for constants).

Human cognitive problems occur when different (but similar) objects, subprograms, types, or constants differ in
name so little that hman reviewers are unlikely to distinguish between them, or when the systens sue
entities to a single entity.

Conventions such dhe use ofcapitalization and singular/plural distinctionmaywork in small and medium
projects, but there are a numbef significant issues to be considered:

9 Large projects often have mixed languages and such convemtiergften languagepecific.

1 Many implementations support identifiers that contain international character aats some language
character sets have ffierent notions of casing and plurality.

9 Different wordforms tend to be language and dialesgiecific, such as a pidgin, and may be meaningless
to humans that speak other dialects.

An important general issue is the choice of names that differ from edwdr ategligibly (in human terms), for
example by differing by only underscores, (none, " "" "), plurals ("s"), visimibar charactergsuch as "I" and
"1","O" and "0"), or underscores/dashes"("_"). [There is also an issue where identifiers agpdistinct to a
human but identical to the computer, such as FOO, Foo, and foo in some computer lang@geagdter sets
extended with diacritical marks and ndratin characters may offer additional problentSome languages or their
implementations mg pay attention to only the first n characters of an identifier.

The problems described abowee different from overloading or overriding where the same name is used
intentionally (and documented) to access closely linked sets of subprograms. Thigdigfatent than using

© ISTIEC2012¢ All rights reserved 53

10
11
12

13

14
15
16

17

18

19
20
21
22
23
24
25

26

27

28
29
30
31
32
33
34
35

WG 23/N @10 Baseline Edition 2TR 24772

reserved names which can lead to a conflict with the reserved use and the use of which may or may not be
detected at compile time.

Name confusion can lead to the application executing different code or accessing different objectisettveriter
intended, or than the reviewers understoodhis can lead to outright errors, or leave in place code that may
executesometimein the future with unacceptable consequences

Although most such mistakes are unintentional, it is plausible thelhasagesan be intentional, if masking
surreptitious behaviour is a goal.

6.19.2 Crossreference

JSF AV Rules:-88

MISRA C 2004: 1.4

CERT C guiliiees: DCLOZ
AdaQualityand Style Guide: 3.2

6.19.3 Mechanism of Failure

Calls to the wrong subprograar references to the wrong data element (that was missed by human review) can
result in unintended behaviour_anguage processors will not make a mistake in name translation, but human
cognition limitations may cause humans to misunderstand, and thegeftay be missed in human reviews.

6.19.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages with relatively flat name spae@i be more susceptibleSystems with modules, classes,
packagesan use qualificatioto disambiguate names that originate from different parents.

1 Languages that provide preconditiommst conditionsinvariance and assertionsr redundant coding of
subprogram signatureiselp to ensure that the subprograms in the module will behave as expected, but
do nothing if different subprograms are called.

9 Languages that treat letter case as significant. Some languages do not differentiate between names with
differing case, while othersad

6.19.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Implementers can create coding standards that provide meaningful guidance on name sed@ctiose.
Goodlanguage specific guidelines could eliminate most problems.

1 Use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of
names. Human review cathen often spot the names that are sorted at an wpected locatioror which
look almost identical to an adjacent name in the.list

9 Use static tools (often the compiler) to detect declarations that are unused.

1 Use languages with a requirement to declare names before use or use available tool or contles op
to enforce such a requirement.

54 © ISTIEC2012 ¢ All rights reserve

(o]

10

11

12
13
14
15
16

17

18
19

20
21
22
23

24
25
26
27

28

29
30
31
32

Baseline Editiol2 TR 24772 WG 23/N @10

6.19.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Languages that do not require declarations of names should consider providing an option that does
impose that requirement.

6.20 Dead Store [WXQ]

6.20.1 Description of application vulnerability

A variable's value is assigned but nesabsequentlyused either because the varidbis not referenced again, or
because a second value is assigned before the first is tdd@dmaysuggest that the design has been
incompletely or inaccurately implementefbr example} @ f dzS Kl & 06SSy ONBIFGSR Iy

This vulneraility is very similar tdJnused VariableY{Z§
6.20.2 Cross reference

CWE:

563. Unused Variable
MISRA C++ 2008:104 and 01-6
CERT C guidelines: MS@13
See alsdJnused Variable[Z$

6.20.3 Mechanism of failure

A variable is assigned a value bustls nevesubsequentlyused.Such arassignment is then generally referred to
as a dead store.

A dead storanay beindicative of careless programming or of a design or coding easmither the use of the

value was forgotten (almost certainly an eryar the assignment was performed even though it was not needed
(at best inefficient).Dead stores may also arise as the result of mistyping the name of a variable, if the mistyped
name matches the name of a variable in an enclosing scope.

There are legimate uses for apparent dead stores. For example, the value of the variable might be intended to
be read by another execution thread or an external device. In such cases, though, the variable should be markec
as volatile. Common compiler optimization tedtues will remove apparent dead stores if the variables are not
marked as volatile, hence causing incorrect execution.

A dead store is justifiablié€ for example:

i The code has beeautomaticall generated where it is commonplace to find dead stores gttuced to
keep the generation process simple and uniform

i The code ignitializinga sparse data set, where all members are cleased, thenselected values
assigned a value.

© ISTIEC2012¢ All rights reserved 55

© 00 N O

10

11

12

13

14

15

16
17

18
19

20

21

22
23
24
25
26

27

28

29
30

WG 23/N @10 Baseline Edition 2TR 24772

6.20.4 Applicable language characteristics

This vulnerability description istended to be applicable to languages with the following characteristics:
1 Anyprogramming language that provides assignment.

6.20.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate ieffilicts in the following ways:

1 Use static analysis to identify any dead stores in the program, and ensure that there is a justification for
them.

1 If variables are intended to be accessed by other execution threads or external devices, mark them as
volatile.

9 Avoid declaring variables of compatible types in nested scopes with similar names.

6.20.6 Implications for standardization
In future standardization activities, the following items should be considered:
1 Languages should considaovidingoptional warning messagef®r dead store.

6.21 Unused Variable [YZ]

6.21.1 Description of application vulnerability

An unused variable is one that is declared but neither meadwritten in the programThis type of error suggests
that the design has been incompletely or inaccurately implemented.

Unused variables by themselves are innocubus,they may provide memory space that attackers could use in
combination with other €échniques

This vulnerability isimilarto Dead Store [WXQf the variable is initialized but never used
6.21.2 Cross reference

CWE:

563. Unused Variable
MISRA C++ 2008:163
CERT C guidelines: MSC13
See als®ead Store\VXJ

6.21.3 Mechanism of failure

A variable is declared, but never usédthe existence of an unused variable may indicate a design or coding error

Becauseompilers routinely diagnose unuséatalvariables, their presenamay bean indication that compiler
warnings are eitherugppressed or are being ignored.

56 © ISTIEC2012 ¢ All rights reserve

10

11

12

13

14
15

16
17
18
19
20

21
22

23

24
25
26
27
28

Baseline Editiol2 TR 24772 WG 23/N @10

While unused variables are innocuous, they may provide available memory space to be used by attackers to
exploit other vulnerabilities.

6.21.4 Applicable language characteristics

This vulnerability description is intendéal be applicable to languages with the following characteristics:
9 Languages that provide variable declarations.

6.21.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effectsaridiowing ways:
1 Enable detection of unused variables in the compiler.

6.21.6 Implications for standardization

In future standardization activities, the following items should be considered:
1 Languages should consider requiring mandatory diagnostiagfiased variables.

6.22 Identifier Name Reuse [YOW]

6.22.1 Description of application vulnerability

When distinctentitiesare defined in nested scopes ugithe same name it is possible th@bgram logic will
operate on an entity other than the one intended

When it is notclear which identifier isised, the program could behave in ways that were not predicted by reading
the sourcecode. Thiscan befound by testing, but circumstances can arise (such as the values of the-samed
objects being mostly the same) where harmful consequences oddhis. weakness can also lead to vulnerabilities
such as hidden channels where humans believe that importamtotbjare being rewritten or overwritten when in
fact other objects are being manipulated

For example, the innermost definition is deleted from the source, the program will continue to compile without a
diagnostic being issugbut execution can produce expected results

6.22.2 Cross reference

JSF AV Rules: 120 and B35

MISRA C 200%.2,5.5, 5.6, 5.7, 20.1, 20.2

MISRA C++ 2008:10-2, 210-3, 22104, 2105, 2106, 170-1, 170-2, and 170-3
CERT C guiliies: DCLOLC andDCL3ZC

AdaQualityand Stye Guide: 5.6.1 and 5.7.1

© ISTIEC2012¢ All rights reserved 57

w N

PRRRREE
URWNPOOO~NO® U b

16
17
18
19
20
21

22
23
24

25
26

27
28
29

30
31

32
33
34

35

36

37

WG 23/N @10 Baseline Edition 2TR 24772

6.22.3 Mechanism of failure

Many languages support the concept of sco@ne of the ideas behind the concept of scope is to provide a
mechanism for the independent definitiasf identifiers that may share the same name.

For instance, in the following code fragment:

int some_vatr,
L
intt_var;
int some_var; /* definition in nested scope */
t var = 3;
some_var = 2;
}

an identifier calledsome_var has been defined in different scopes.

If either the definition osome_var ort_var that occurs in the nested scope is
a2dz2NOS Aada Y2RAFASRO Al Aa ySoOSaal Ne

deletéar e€xample when the
ifa deRefopebdel&test f f

the definition oft_var but fails to delete the statement thiaeferences it, then most languages require a
diagnostic to be issuedijch ageference to undefined variable However, if the nested definition glome_var
is deleted but the reference to it in the nested scope is not deleted, thediagnostic wilbe issued (because the

reference resolves to the definition in the outer scope).

In some cases neanique identifiers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the imgi&tion considers to be distinct. For

example, in the following code fragment:

extern int global_symbol_definition_lookup_table_a[100];
extern int global_symbol_definition_lookup_table b[100];

the external identifiers are not unique on implementationses only the first 31 characters are significant. This

situation only occurs in languages that allow multiple declarations of the same identifier (other languages require

a diagnosti message to be issued).

A related problem exists in languages that allmyerloading or overriding of keywords or standard library
function identifiers. Such overloading can lead to confusion about which entity is intended to be referenced.

Definitions for new identifiers should not use a name that is already visible withisdope containing the new
definition. Alternately,utilize languagespecific facilities that check for and prevent inadvertent overloading of

names should be used.

6.22.4 Applicable language characteristics

This vulnerability is intended to be applicaltb languages with the following characteristics:

i Languages that allow the same name to be used for identifiers defined

58

in nested scopes.

© ISQIEC2012 ¢ All rights reserve

2

[EEN

w

© 00 N O O

10
11
12
13
14
15
16

17

18

19
20
21
22
23

24

25

26
27
28
29

30
31

32

33

1

Baseline Editiol2 TR 24772 WG 23/N @10

Languages where unique names can be transformed inteumique names as part of the normal tool
chain.

6.22.5 Avoidi ng the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1

Ensure that a definition of agntity does not occur in a scope where a differentity with the same
name isaccessible and can be used in the same contdXanguagespecific project coding convention
can be used to ensure that such errors are detectaith static analysis

Ensure that a definition of a@ntity does not occur in a scope where a differentity with the same

name is accessible and has a type that permits it to occur in at least one context where tastiiystan
occur.

Uselanguage features, if any, which explicitly mark definitions of entities that are intended to hide other
definitions.

Develop or use tools that identify name collisions or reuse when truncated versions of names cause
conflicts

Ensure that all identifiers differ within the number of characters considered to be significant by the
implementations that are likely to be ed, and document all assumptions.

6.22.6 Implications for standardization

In future standardization activities, the following items should be considered:

il
)l

6.23

Languages should require mandatory diagnostics for variables with the same name in nested scopes.
Langiages should require mandatory diagnostics for variable names that exceed the length that the
implementation considers unique.

Languages should consider requiring mandatory diagnostics for overloading or overriding of keywords or
standard library functiondentifiers.

Namespace Issues [BJL]

6.23.1 Description of Application Vulnerability

If a language provides separate, Roierarchical namespacgea usercontrolled ordering of namespaceand a
means to make names declared in these name spaces directly visible to an application, the potential of
unintentional and possible disastrous change in applicabemaviourcan arise, when names are added to a
namespace dunig maintenance.

Namespaces include constructs like packages, modules, libraries, classes or any other means of grouping
declarations for import into other program units.

6.23.2 Crossreferences

MISRA C++ 2008:3-1, 7-3-3, 7-3-5, 145-1, and 160-2

© ISTIEC2012¢ All rights reserved 59

a b~ WD

(o]

10
11

12
13
14
15
16

17
18

19
20
21
22
23
24
25
26
27

28

29

30
31
32

33

34

WG 23/N @10 Baseline Edition 2TR 24772

6.23.3 Mechanism of Failure

The failure is best illustrated by an examphamespacdNl provides the name\ but not B; Namespacd&l2
provides the namé but not A. The application wishes to ugefrom N1 andB from N2. At this point, there are
no obvious isues. The application chooses (or needs to) import the namespaces to obtain names for direct
usagefor an example.

UseN1, N2; ¢ presumed to make all names il and N2 directly visible
e X = A + B;
The semantics of the above example are intuitive andmbiguous.

Later, during maintenance, the nanBds added toN1. The change to the namespace usually implies a
recompilation of dependent unitsAt this point, two declarations d are applicable for the use &in the above
example.

Some languagésy to disambiguate the above situation by stating preference rules in case of such ambiguity
among names provided by different name spacksin the above exampl@1is preferred oveN2, the meaning
of the use oB changes silently, presuming that typing error arisesConsequently the semantics of the
program change silently and assuredly unintentionally, since the implemeniét cAnnotassume that all users
of N1would prefer to take any declaration 8ffrom N1 rather than its previous namesge.

It does not matter what the preference rules actuallg, as long as the namespaces are mutafllbe above
example is easily extended by addiigp N2 to show a symmetric error situation for a different precedence rule.

If alanguage supportsoMfer2 F RAYy 3 2F &dz LINPINI YaI (GKS y2iG4A2y 2F da
extended to mean not only the same name, but also the same signature of the subprogoamulnerabilities
associated with overloading and overriding, $eentifier Name Rews[YOW] In the context of namespaces,

however, adding signhature matching to the name binding process, merely extends the described problem from
simple names to full signatures, but does not alter the mechanism or quality of the described vulnerability. |
particular, overloading does not introduce more ambiguity for binding to declarations in different name spaces.
This vulnerability not only creates unintentional errotsalso can be exploited maliciously, if the source of the
application and of the amespaces is known to the aggressor and one of the namespaces is mut#ise by

attacker.

6.23.4 Applicable Language Characteristics

The vulnerability is applicable to languages with the following characteristics:
1 Languages that support ndrierarchical sparate namespaces, have means to import all names of a
YIEYSAaLI OS aoK2tSalkfSeé T2N RANDBR@modgintilipleimpittedk I S L
direct homographs. All three conditions need to be satisfied for the vulnerability to arise.

6.23.5 Avoiding the Vulnerability or Mitigating its Effects

Software developers can avoid the vulnerability or mitigatdlieffects in the following ways:

60 © ISTIEC2012 ¢ All rights reserve

10
11
12

13
14
15

16
17
18

19
20

21
22
23
24
25

26

27
28
29
30
31
32
33

Baseline Editiol2 TR 24772 WG 23/N @10

T | @2ARAY3 apoKz2fSalfSéd AYLRNI RANBOGAGSaA
T 'aAy3a 2yfte asStSOGAGS aaAiy It Galiffed nases (inbdthdadedi RA NS C
provided that the language offers the respective capabilities)

6.23.6 Implications for Standardization
In future standardization activities, the following items should be considered:

1 Languages should not have preferenckesilamong mutable namespaces. Ambiguities shoulihbedid
and avoidable by the useigr example by using names qualified by their originating namespace.

6.24 Initialization of Variables [LAV]
6.24.1 Description of application vulnerability

Reading a variable that has not been assigned a value appropriate to its type can cause unpredictable execution
the block that uses the value of the vaiia, and has the potential to export bad values to callers, or causefeut
bounds memory accesses.

Uninitialized variable usage is frequently not detected until after testing and often when the code in question is
delivered and in use, because happenstamwill provide variables with adequate values (such as default data
settings or accidental lefbver values) until some other change exposes the defect.

Variables that are declared during module construction (by a class constructor, instantiation, amagtat) may
have alternate paths that can read values before they are $bits can happen in straight sequential code but is
more prevalent when concurrency or-coutines are present, with the same impacts described above.

Another vulnerability occur&shen compound objects are initialized incompletely, as can happen when objects
are incrementally built, or fields are added under maintenance.

When possible and supported by the language, wisbtacture initialization is preferable to fieloly-field

initialization statements, and named association is preferable to positional, as it facilitates human review and is
less susceptible to failures under maintenané®r classes, the declaration and initialization may occur in
separate modules. In such casesiiist be possible to show that every field that needs an initial value receives
that value, and to document ones that do not require initial values.

6.24.2 Cross reference

CWE:

457. Use of Uninitialized Variable
JSF AV Rules: 71, 143, and 147
MISRA C 2004:1, 9.2, and 9.3
MISRA C++ 2008:531
CERT C guililees: DCLIE and EXP33
AdaQualityand Style Guide: 5.9.6

© ISTIEC2012¢ All rights reserved 61

AW

© 00 N O O

10

11
12

13

14

15

16

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

WG 23/N @10 Baseline Edition 2TR 24772

6.24.3 Mechanism of failure

Uninitialized objects may havevalidvaluesvalidbut wrong values, ovalidand dangerous valuearong
values could cause unbounded branches in conditionals or unbounded loop executions, or could simply cause
wrong calculations and results.

There is a special case of pointers or access types. When such a type contains null values, a bound violation and
hardwareexception can result. When such a type contains plausible but meaningless values, random data reads
and writes can collect erroneous data or can destroy data that is in use by another part of the program; when
such a type is an access to a subprogram wigttausible (but wrong) value, then either a bad instruction trap

may occur or a transfer to an unknown code fragment can ocailirof these scenarios can result in undefined
behaviour.

Uninitialized variables are difficult to identify and use for akirs, but can be arbitrarily dangerous in safety
situations.

6.24.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that permit variables to be rdzefore they are assigned.
6.24.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 The general problem of showing that all objects are initialized iadtdable; hence developers must
carefully structure programs to show that all variables are set before first read on every path throughout
the subprogram.Where objects are visible from many modules, it is difficult to determine where the first
read occus, and identify a module that must set the value before that redéthen concurrency,
interrupts and coroutines are present, it becomes especially imperative to identify where early
initialization occurs and to show that the correct order is set via progsaucture, not by timing, OS
precedence, or chance.

1 The simplest method is to initialize each object at elaboration time, or immediately after subprogram
execution commences and before any branchiéshe subprogram must commence with conditional
statements, then the programmer is responsible to show that every variable declared and not initialized
earlier is initialized on each branchlowever, the initial value must be a sensible value for the logic of the
program. Sacalled "junk initialization",dr example, setting every variable to zero, prevents the use of
tools to detect otherwise uninitialized variables.

1 Applications can consider defining or reserving fields or portions of the object to only be sefuilgen
initialized. However, this approah has the effect of setting the variable to possibly mistaken values while
defeating the use of static analysis to find the uninitialized variables.

9 It should be possible to use static analysis tools to show that all objects are set before use in certain
specific cases, but as the general problem is intractable, programmers should keep initialization
algorithms simple so that they can be analyzed.

62 © ISTIEC2012 ¢ All rights reserve

© 00 NO Ol WDN P

e
N R O

13

14

15
16
17
18
19

20

21

22
23

24
25
26

27

28
29
30
31
32

33

34
35

Baseline Editiol2 TR 24772 WG 23/N @10

1 When declaring and initializing the object togethiéthe language does not require that the compiler
statically verify that the declarative structure and the initialization structure matwe static analysis
tools to help detect any mismatches.

1 When setting compound objects, if the language provides mechanisms to set all components together, us
those in preérence to a sequence of initializations as this helps coverage analysis; otherwise use tools the
perform such coverage analysis and document the initializatidm not perform partial initializations
unless there is no choice, and document any deviatfom®s 100% initialization.

1 Where default assignmeatofmultiple components are performed, explicit declaration of the component
names and/or ranges helps static analysis and identification of component changes during maintenance.

1 Some languages have namassignments that can be used to build reviewable assignment structures
that can be analyzed by the language processor for completenesguages with positional notation
only can use comments and secondary tools to help show correct assignment.

6.24.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Some languages have ways to determine if modules and regions are elaborated and initialized and to
raise exceptions if this does not occlrarguages that do not could consider adding such capabilities.

1 Languages could consider setting aside fields in all objects to identify if initialization has occurred,
especially for security and safety domains.

1 Languages that do not support wheddject iritialization could consider adding this capability.

6.25 Operator Precedence/Order of Evaluation [JCW
6.25.1 Descriptio n of application vulnerability

Each language provides rules of precedence and associativity, for each expression that operands bind to which
2LISNI (2 NBR D ¢KS&S NHzZ Sa INB Ffaz2 (yz26y |a GaNRdAzZLAY

Experience and experimental evidence shows tetelopers can have incorrect beliefs about the relative
precedence of many binary operators. SBeyeloper beliefs about binary operator precedeit&'u, 18(4):14
21, August 2006

6.25.2 Cross reference

JSF AV Rules: 204 and 213

MISRA C 2004: 12.1, 1212.5, 12.6, 13.2, 19.10, 19.12, and 19.13

MISRA C++ 2008:5-1, 45-2, 45-3, 50-1, 50-2, 52-1, 53-1, 160-6, 163-1, and 163-2
CERT C guililees: EXPGC

AdaQualityand Style Guide: 7.1.8 and 7.1.9

6.25.3 Mechanism of failure

In Cand G-+, the bitwise operatorgbitwise logical and bitwise shift) are sometimes thought of by the

LINEINI YYSNI K @Ay AAYAELI NI LINBOSRSYyOS G2 I NRilK%SGAO

© ISTIEC2012¢ All rights reserved 63

A WDN P

(o2

10
11

12

13

14
15
16
17
18

19

20

21
22
23

24

25

26
27
28

29
30
31
32

WG 23/N @10 Baseline Edition 2TR 24772

08 xdninusog/ S A& Slidzf (2 TSNRE&OS | LIRB=ENI ¥ESNISYA 3 Kb &S NIK
andedwith 1A & SljdzZt f (2 1 SNRéS 6KSNBIA (KS 2LISNI 42N LINBOS
I & & O21¥0Xzi ISNE R dzOriteypeteditdzerd, theh Qitwiseand the result witiké ¥ LINR RdzOAy 3 6
O2yadtydo 1SNRBE O2ydNINE (2 G(GKS LINEINI YYSNRE AyiaSyd

Examples from an opposite extreme can be found in programs written inwA#th is noteworthy for the

absence ofinydistinctions oLINS OS RSy OS @ hyS O2YY2ya*d+& I RS XYAS8YRSBY
LINE R dar@sbluscé = g KSNBIF a | t-tp-loftiassdeiatvil INNBYR b@IERE timesaé @

6.25.4 Applicable language characteristics

This vulnerability descrifn is intended to be applicable to languages with the following characteristics:

1 Languages whose precederered associativityules are sufficiently complex that developers do not
remember them.

6.25.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
itemized above frordSFAV[15], CERT [11]or MIRRA G12].

1 Useparenthegsaround binary operator combinations that are known to be a source of efoor (
example mixed arithmetic/bitwise and bitwise/relational operator combinations).

1 Break up complex expressions and use temporary variables to makedéeclearer.

6.25.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Language definitions should avoid providing precedence or a particular associativity for operators that are
not typically ordered with respect to one another in arithmetic, and instead require full parenthesization
to avoid misinterpretation.

6.26 Side-effects and Order of Evaluation [SAM]

6.26.1 Description of application vulnerability

Some programming languages allow subexpressions to causeffgdés (such as assignment, increment, or
decrement). For example, some programming languages pstroit sideeffects, and if, within one expression
6 a dzOk= v[H+4 d € ,tiwo or more sideeffects modify the same object, undefined behaviour results.

Some languages allow subexpressions to be evaluated in an unspecified grdegrgn removed during
optimization If these subexpressions contain sigiéects, then the value of the full expression can be dependent
upon the order of evaluation. Furthermore, the objects that are modified by theedfidets can receive values
that are dependent upon therder of evaluation.

64 © ISTIEC2012 ¢ All rights reserve

o ~N OO 0 A

10
11
12

13

14
15
16

17

18

19

20

21
22

23

24
25
26

27
28
29

30

31

32

Baseline Editiol2 TR 24772 WG 23/N @10

If a program containthese unspecified or undefindgehavious, testing the program and seeing that it yields the
expected results may give the false impression that the expression will always yield the expected result.

6.26.2 Cross reference

JSF AV Rules: 157, 158, 166, 204, 204.1, and 213
MISRA C 20042.1-12.5

MISRA C++ 2008:051

CERT C guililees: EXPXC, EXP3C

AdaQualityand Style Guide: 7.1.8 and 7.1.9

6.26.3 Mechanism of failure

Whensubexpressions with side effects aread within an expression, thenspecifiedorder of evaluation can
result ina program producingifferent results on different platforms, or even at different times on the same
platform. For exampleconsider

a = f(b) + g(b);

wheref andg both modifyb. Iff(b) is evaluated first, then the used as a parameter tg(b) may be a
different value than ifj(b) is performed first. Likewise,g{b) is performed firstf(b) may be called with a
different value ofb.

Other examples of unspecified order, or evendefined behaviougan be manifestedsuchas
a = f(i) + i++;

or
afi++] = b[i++];

Parenthegs around expressions can assist in removing ambigbibyit grouping butthe issues regarding side
effects and order of evaluatioare not changed by the presee ofparenthe®s; consider

j =it * i+
whereevenif parenthegs are placedaround thei++ subexpressionaindefined behavioustill remains (All

examples use the syntax ofo€Javdor brevity; the effects can be createdamy language that allows functions
with sideeffects in the places where C allows the increment operatjons

The unpredictable nature of the calculation means that the program cannot be tested adequately to any degree

of confidence.A knowledgeable atta@t can take advantage of this characteristic to manipulate data values
triggering execution that was not anticipated by the developer.

6.26.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languageshégtfollowing characteristics:

1 Languages that permitxpressons to contain subexpressions with side effects

© ISTIEC2012¢ All rights reserved 65

10
11

12

13

14
15
16
17
18
19
20
21
22
23

24

25
26
27
28
29
30
31
32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

1 Languages whose subexpressionsa@mmputed in an unspecified ordering.

6.26.5 Avoiding the vulnerability or mitigating its effects

Software devapers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Make use of one or more programming guidelines which (a) prohibit these unspecified or undefined

behaviours, and (b) can be enforced by static analysis. (See JSF ANSRAdrivles in Cross reference

clauseglSAM])

1 Keep expressions simple. Complicated code is prone to error and difficult to maintain.

6.26.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 In developingnew or revised languages, give consideration to langdegtiresthat will eliminate or

mitigate this vulnerabilitysuch as pure functions

6.27 Likely Incorrect Expression [KOA]

6.27.1 Description of application vulnerability

Certain expressions are symptomatic of what is likely to be a mistake made by the prograiraestatement is

not contrary to the language standartiutis unlikely to beéntended The statement may have no effect and
effectively is a null statement or may introduce an unintended-®flect. A common example is the use=®fn
anif expression in @here the programmer meant to do an egjity test using the== operator. Other easily
confused operators in C are the logical operators such&a®r the bitwise operatoi, or vice versa It isvalid

and possible that the programmer intended to do an assignment withinfthexpression, butlue to this being a
common error, a programmer doing so would be using a poor programming practice. A less likely occurrence, but

still possible is the substitution ef= for = in what is supposed to be an assignment statement, but which
effectively becanes a null statementThese mistakes may survive testing only to manifest themselves in

deployed code where they may be maliciously exploited.
6.27.2 Cross reference

CWE:
480. Use of Incorrect Operator
481. Assigning instead of Comparing
482. Comparing stead of Assigning
570. Expression is Always False
571. Expression is Always True
JSF AV Rules50 and 166
MISRAC2004: 12.3,12.4,12.13, 13.1, 13.7, and 14.2
MISRAC++2008: 01-9, 50-1, 62-1, and 65-2
CERT C guiliies: MSCOZ and MSC0OB

66

© ISQIEC2012 ¢ All rights reserve

00 NO O~ WDN

10
11
12

13
14

15

16

17

18

19

20

21
22
23
24
25
26
27
28
29
30

31

32

Baseline Editiol2 TR 24772 WG 23/N @10

6.27.3 Mechanism of failure

Some of the failures are simply a case of programmer carelessness. Substitatimstefid of==in a Boolean

test is easy to do and mostadd C+¥rogrammers have made this mistake at one time or anotheheOt

instances can be the result of intricaciedtud language definition that specifies what part of an expression must
be evaluated For instance, having an assignment expression in a Boolean statement is likely making an
assumption that the complete gxession will be executed in all cases. However, this is not always the case as
sometimes the truthvalue of the Boolean expression can be determined after only executing some portion of the
expression. For instance:

if (a==b)|(c=(d -1))

There isno guarantee which of the two subexpressidas== b) or (c=(d -1)) will be executed first.
Should(a==b) be determined to be true, then there is no need for the subexpresgiefd - 1)) to be
executed and as such, the assignmg@t(d - 1)) will not occur.

Embedding expressions in other expressions can yield unexpected rebudtement and decrement operators
(++ and--) can also yield unexpected results when mixed into a complex expression.

Incorrecty calculated results can lead to a wide variety obegous program execution

6.27.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 All languages are susceptible to likely incorrect expressions.

6.27.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Simplify expressions.

1 Do not use assignment expressions as function parameters. Sometimes the assignmeat by n
executed as expected. Instead, perform the assignment before the function call.

1 Do not perform assignments within a Boolean expression. This is likely unintended, but if not, then move
the assignment outside of the Boolean expression for clarityrabustness.

1 On some rare occasions, some statements intentionally do not have side effects and do not cause contro
flow to change. These should be annotated through comments and made obvious that they are
intentionally ncops with a stated reason. pbssible, such reliance on null statements should be avoided.

In general, except for those rare instances, all statements should either have a side effect or cause contrc
flow to change.

6.27.6 Implications for standardization

In future standardizatiomctivities, the following items should be considered:

© ISTIEC2012¢ All rights reserved 67

© 00N O O WDN P

=
o

11

12
13
14

15
16
17

18

19
20

21

22
23
24
25
26
27

28
29
30

31

32

33
34
35

WG 23/N @10 Baseline Edition 2TR 24772

1 Languages should consider providing warnings for statements that are unlikely to be right such as
statements without side effectsA null (neop) statement may need to be added to the language for
thoserare instances where an intentional null statement is needddyving a null statement as part of
the language will reduce confusion as to why a statement with no side effects is present in code.

9 Languages should consider not allowing assignments uskshetion parameters.

Languages should consider not allowing assignments within a Boolean expression.

1 Language definitions should avoid situations where easily confused symbolsgs= and==, or; and
., or!l= and/=) arevalidin the same context. F@xample = is not generallyalidin anif statementin
Javabecause it does not normally return a boolean value.

=

6.28 Dead and Deactivated Code [XY(Q

6.28.1 Description of application vulnerability

Dead and Deactivated codecode that exists in the executable, but which can never be executed, either because
there is no call path that leads to fo¢ example a function that is never called), or the path is semantically
infeasible for example its execution depends on the state of a conditional that can never be achieved).

Dead and Deactivated coaeay beundesirable because fhayindicate the pasibility of a coding errorA
ASOdzNAGe AaadzS Aad | énpctetdI2Vinky Sadefy Standafds prohibit2iead dade béciBeS (¢
dead code is not traceable to a requirement.

Also covered in this vulnerability is code which is believecetddnd, but which is inadvertently executed.

Dead and Deactivated code is considesegarately from the description of Unused Variable, which is provided
by[YZ$&

6.28.2 Cross reference

CWE:
561. Dead Code
570. Expression is Always False
571. Expression is Always True
JSF AV Rules: 127 and 186
MISRA C 2004: 2.4 and 14.1
MISRA C++ 2008:=161 to 0-1-10, 27-2, and 27-3

CERT C guidelines: MS@@nd MSC12
DO178B/C

6.28.3 Mechanism of failure

DO-178B definePeadand Deactivated codas:

1 Dead code; Executable object code (or data) which... cannot be executed (code) or used (data) in an
operational configuration of the target computer environment andas tnaceable to a system or
software requirement.

68 © ISTIEC2012 ¢ All rights reserve

A WDN P

o Ol

10
11

12

13
14

15
16

17
18
19
20
21
22

23

24
25
26
27
28

29
30

31

32

33

Baseline Editiol2 TR 24772 WG 23/N @10

91 Deactivated code Executable object code (or data) which by design is either (a) not intended to be
executed (code) or used (data), for example, a part of a previously develofiadse component, or (b)
is only executed (code) or used (data) in certain configurations of the target computer environment, for
example, code that is enabled by a hardware pin selection or software programmed options.

Dead code is code that exists in@pplication, but which can never be executed, either because there is no call
path to the codefpr example a function that is never called) or because the execution path to the code is
semantically infeasiblesin

integer i = 0;

if(i =0
then fun _a();
else fun_b();

fun_b is dead code, as onfyun_a can ever be executed.

Compilers that optimize sometimes generate and then remove dead code, including code placed there by the
programmer. The deadness of code can also depend on the linkingarbsely compiled modules.

The presence of dead code is not in itself an erfitere may also béegitimate reasosfor its presence, for
example:

Defensive code, only executed as the result of a hardware failure.

Code that is part of a library not required in this application.

Diagnostic code not executed in the operational environment.

Code that is temporarily deactivatedip may be needed soon. This may occur as a way to make sure the
code is still accepted by the language translator to reduce opportunities for errors when it is reactivated.
1 Code that is made available so that it can be executed manually via a debugger

=A =4 =4 =2

SuK O2RS Yl & 06S NBTS NNMNBRdeddxode that ig tRefeltbyittentd | § SRE ®

There is a secondary consideration for dead code in languages that permit overloading of functions and other
constructsthat usecomplex name resolution strategie$he developer may believe that some code is not going

to be used (deactivated), but its existence in the program means that it appears in the namespace, and may be
selected as the best match for some use that was intended to be of an overloading furithianis, although the
developer believes it is never going to be used, in practice it is used in preference to the intended function.

However, it may be the case that because of satier error, the code is rendered unreachable. Therefore, any
dead codeshauld be reviewed and documented.

6.28.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that allow code to exist in the executable that can nevexkécuted.

© ISTIEC2012¢ All rights reserved 69

© 00 N O U1 bW

10
11
12
13
14

15

16

17

18

19
20
21
22

23

24
25
26
27
28

29

30
31

32

33

WG 23/N @10 Baseline Edition 2TR 24772

6.28.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Thedeveloper shoulé&dndeavorto removedead code from an applicatiaimless its presnce serves a
purpose

1 When a developer identifies code that is dead because a condittemsistentlyevaluates to the same
value, this could be indicative of an earlier largt could be indicative of inadequate path coverage in the
test regimen Additional investigation may be needed to ascertain why the same value is occurring

1 The developer should identify any dead code in the application, and provide a juistifiGidonly to
themselves) as to why it is there.

i The developer should also ensure that any code that was expected to be unused is dctoathented
as dead code.

1 The developer should apply standard branch coverage measurement tools ane &psL00% coverage
that all branches are neither dead nor deactivated

i The developer shouldse analysis tools to identify unreachable code.

6.28.6 Implications for standardization
[None]

6.29 Switch Statements and Static Analysis [CLL]
6.29.1 Description of application vulnerability

Many programming languages provide a construct, such@bka switch statemen, that chooses among
multiple alternative control flows based upon the evaluated result of an expres3iba.use of such constructs
may introduce application vulnerabilities if not all possible caggsear within the switclor if control
unexpectedlylbws from one alternative to another.

6.29.2 Cross reference

JSF AV Rules: 148, 193, 194, 195, and 196
MISRA C 2004: 15.2, 15.3, and 15.5
MISRA C++ 20084-3, 64-5, 64-6, and 64-8
CERT C guiliiees: MSCOC

AdaQualityand Style Guide: 5.6.1 and 5.6.1

6.29.3 Mechanism of failure

The fundamental challenge when usingwéitch statement is to make sure that all possible cases are, in fact,
treated correctly

6.29.4 Applicable language characteristics

This vulnerability description is intended to be apalble to languages with the following characteristics:

70 © ISTIEC2012 ¢ All rights reserve

A WN P

(o]

© 00~

10

12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

27
28

29

30

31
32
33

Baseline Editiol2 TR 24772 WG 23/N @10

! Languages thatantain a construct, such assavitch statement, that provides a selection among
alternative control flows based on the evaluation of an expression.

f Languages that do not require full\arage of sswitch statement.

1 Languages that provide a default case (choice)switch statement.

6.29.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following: way

1 Base the switch choice upon the valueaofexpression that has a small number of potential values that
can be statically enumerated. In languages that provide them, a variable of an enumerated type is to be
preferred becausa possible set ofalues is known statically and is small in number (as compared, for
example, to the value set of an integer variabléJhere it is practical to statically enumerate the
switched type, it is preferable to omit the default case, because the static anslysisplified and
because maintainers can better understand the intent of the original programiMren one must
switchbased upon the value of an instance of some other fyfpie necessary to have a default case,
preferaldy to be regarded as a serious error condition.

T ' @2AR aFft26Ay 3 (KNP dz3 Even iffcdhiictly iRpe®entdd, igisSdifficudt fol vy 2 (1 K S
reviewers and maintainers to distinguish whether the construct was intended or is an error of orfission
In cases where flosthrough is necessary and intended, an explicitly coded branch may be prefévable
clearly mark the intent.Providing comments regarding intention can be helpful to reviewers and
maintainers.

1 Perform static analysis to determinesill cases are, in fact, covered by the cofldote that the use of a
default case can hamper the effectiveness of static analysis since the tool cannot determine if omitted
alternatives were or were not intended for default treatmeént.

1 Other means of migation include manual review, bounds testing, tool analysis, verification techniques,
and proofs of correctness.

6.29.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Language specificatiomsuld require compilers to ensure that a complete set of alternatives is provided
in cases where the value set of the switch variable can be statically determined.

6.30 Demarcation of Control Flow [EOJ]

6.30.1 Description of application vulnerability

Some programming languages explicitly mark the end df astatement or a loop, whereas other languages
mark only the end of a block of statementsanguages of the latter category are prone to oversights by the
programmer, causingnintended sequences of control flow.

4 Using multiple labelsn individual alternatives is not a violation of thicommendation though.

© ISTIEC2012¢ All rights reserved 71

o Ok N

10
11
12

13

14

15
16

17

18

19
20
21
22
23
24
25
26
27
28
29
30

31

32

33
34
35

WG 23/N @10 Baseline Edition 2TR 24772

6.30.2 Cross reference

JSF AV Rules: 59 and 192

MISRA C 2004: 14.8, 14.9, 14.10, and 19.5

MISRA C++ 2008:3-1, 64-1, 64-2, 64-3, 6-4-8, 6:5-1, 65-6, 6:6-1 to 6:6-5, and160-2
Hatton 18: Control flowg if structure

AdaQualityand Style Guide3, 5.6.1through5.6.10

6.30.3 Mechanism of failure

Programmers may rely on indentation to determine inclusion of statements within agistr Testing of the
software may not reveal that statementisat appear to be included in a construct (due to formatting) actually lay
outsideof it because of the absence of a terminatdioreover, for a nestedf - then - else statement the
programmer may be confused about whi€h statement controls theslse part directly This anlead to
unexpected results.

6.30.4 Applicable language character istics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that contain loops aconditionala G I 6§ SYSy da GKIFG N8B y2i SELX A
construct.

6.30.5 Avoiding the vulner ability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Adopt a convention for marking the closing of a construct that can be checked by a tool, to ensure that
program structures apparent.

1 Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
itemized above from JSF AV, MISRA C, MISRA C++ or Hatton.

1 Other means of assurance might include proofs of correctness, analysis withvedfiEation
techniguesor other methods

1 Pretty-printers and syntasaware editors may be helpful in finding such problems, but sometimes disguise
them.

T Include a final else statement at the endibf-X-else -if constructs to avoid confusion.

1 Always endse the body of statements of ah , while ,for , do, or other statements potentially
introducing a block of code 'y’ 6 NF O® a2 MJa2 0 KSNJ RSYF NOIF GA2Y AYRAOLI
used.

6.30.6 Implications for standardization
In future standardiation activities the following items should be considered:

1 Specifierof languages should consider adding a mode that strictly enforces compound conditional and
f22LAy3 02y aiNUz0Ga ¢AGéndiS ELI2ANDAG A SNVAAYY3F (6ANR yOb| Sl
1 Specifies of languages might consider explicit termination of loops and conditional statements.

72 © ISTIEC2012 ¢ All rights reserve

[EEN

0 N o O

10
11

12

13
14
15

16

17
18
19

20

21

22

23

24

25
26
27
28
29

30

31

Baseline Editiol2 TR 24772 WG 23/N @10

1 Specifiers might consider features to terminate named loops and conditionals and determine if the
structure as named matches the structure as inferred.

6.31 Loop Control Variables [TEX]

6.31.1 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controllée alue of a loop

control variable. Looping constructs provide a method of specifying an initial value for this loop control variable,
test that terminates the loop and the quantity by which it should be decrementadcremented on each loop
iteration.

In some languages it is possible to modify the value of the loop control variable within the body of the loop.
Experience shows that such value modifications are sometimes overlooked by readers of the source code,
resulting in faults being introduced.

6.31.2 Cross reference

JSF AV Rule: 201
MISRA C 2004: 13.6
MISRA C++ 2008:561 to 6-:5-6

6.31.3 Mechanism of failure

Readers of source code often make assumptions about what has been wrtteommon assumption is that a
loop control variable isot modfied in the body of the loop. A programmer may write incorrect code based on
this assumption.

6.31.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Larguages that permit a loop control variable to be modified in the body of its associated loop.

6.31.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Notmodifying a loop control variable in the body of its associated loop body.

1 Some languages, such aar@@ C++lo not explicitly specify which of the variables appearing in a loop
header is the control variabler the loop MISRAC[12] and MISRA C+H.6] have proposed algorithms
for deducing which, if any, of these variables is the loop control variable in the programming languages C
and C++ (these algorithms could also be applied to other languages that supplikeddzloop).

6.31.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

© ISTIEC2012¢ All rights reserved 73

10
11
12
13

14
15
16

17
18

19
20
21

22

23
24

25

26

27
28
29
30

31
32

WG 23/N @10 Baseline Edition 2TR 24772

1 Language designers should consider the addition of an identifier type for loop control that cannot be
modified by anything other than thieop control construct.

6.32 Off-by-one Error [XZH]

6.32.1 Description of application vulnerability

A program uses an incorrect maximum or minimum value that is 1 wiotdess than the correct value. This
usually arises from one of a number of situations where the bounds as understood by the developer differ from
the design, such as:

1 Confusion between the need ferand<= or > and>=in a test.

1 Confusion as to the @ex range of an algorithm, such as: beginning an algorithm at 1 when the underlying
structure is indexed from 0; beginning an algorithm at 0 when the underlying structure is indexed from 1
(or some other start point); or using the length of a structuréta®ound instead of the sentinel values.

9 Failing to allow for storage of a sentinel value, such as\theL string terminator that is used in the C
and C+programming languages.

These issues arise from mistakes in magphe design into a particular language, in moving between languages
(such as between languages where all arrays start at 0 and other languages where arrays start at 1), and when
exchanging data between languages with different default ab@ynds

The ssue also can arise in algorithms where relationships exist between components, and the existence of a
boundsvalue changes the conditions of the test.

The existence of this possible flaw can also be a serious security hole as it can permit someamptiticusly
provide an unused location (such as 0 or the last element) that can be used for undocumented features or hidden
channels.

6.32.2 Cross reference

CWE:
193. Oftby-one Error

6.32.3 Mechanism of failure
An offby-one error could lead to:

an outof bounds access to an array (buffer overflow),
incomplete comparisons or calculation mistakes,

a read from the wrong memory location, or

9 anincorrect conditional.

=A =4 =4

Such incorrect accesses can cause cascading errors or referemeeslitlocations, reslting in potentially
unbounded behaviour.

74 © ISTIEC2012 ¢ All rights reserve

~N O

10

11
12
13
14
15
16
17
18
19
20

21

22

23
24
25

26

27

28
29
30

31

32
33
34
35

Baseline Editiol2 TR 24772 WG 23/N @10

Off-by-one errors are not often exploited in attacks because they are difficult to identify and exploit externally,

but the cascading errors and boundargndition errors can be severe.

6.32.4 Applicable language characteristics

As this vulnerability arises because of an algorithmic error by the developer, it can in principle arise in any

language; however, it is most likely to occur when:

1 The language relies on the developer having implicit knowledge of strustareand end indiceddr
example knowing whether arrays start at 0 orglor indeed some other value).
1 Where the language relies upon explistiundsvalues to terminate variable length arrays.

6.32.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 A systematic development process, use of development/analysis tools and thorough testing are all

common ways of preventing errors, and in this casepgfbne errors.

1 Where references are being made to structure indices and the languages provide ways to specify the

whole structure or the starting and ending indices explicfily €xample Adaprovides xxx'First and

xxx'Last for each dimensiorthese should be used alwayg/here the language doesn't provide these,

constants can be declared and used in preference to numeric literals.

T 2KSNB (KS fly3adza 3S R2SayQi SyOlF LjadzZ S JFNRI of
through library djects and a coding standard developed that requires such arrays to only be used via

those library objects, so the developer does not need to be explicitly concerned with mahaginds

values.
6.32.6 Implications for standardization
In future standardizion activities the following items should be considered:

9 Languages should provide encapsulations for arrays that:
0 Prevent the need for the developer to be concerned with explicit bounds values.
o0 Provide the developer with symbolic access to the arrayt,stad and iterators.

6.33 Structured Programming [EWD]

6.33.1 Description of application vulnerability

Programs that have a convoluted control structure dkely to be more difficult to be human readable, less

understandable, harder to maintain, more difficult to modify, harder to statically analyze, more difficult to match

the allocation and release of resourcesid more likely to be incorrect
6.33.2 Cross reference

JSF AV Rules: 20, 113, 189, 190, and 191
MISRA C 20044.4,145, and 20.7

MISRA C++ 2008:6-1, 66-2, 66-3, and 170-5
CERT C guiliiges: SIG3Z

© ISTIEC2012 ¢ All rights reserved

75

&

~

10
11
12
13

14

15
16
17

18

19
20
21
22
23

24

25

26
27

28

29

30
31
32

WG 23/N @10 Baseline Edition 2TR 24772

AdaQualityand Style Guide: 3, 4, 5.4, 5.6, and 5.7
6.33.3 Mechanism of failure

Lack ofstructured programming can lead to:

1 Memory or resource leaks.

1 Error prone maintenance.

1 Design that is difficult or impossible to validate.

1 Source code that is difficult or impossible to statically analyze.

6.33.4 Applicable language characteristics
This vinerability description is intended to be applicable to languages with the following characteristics:

Languages that allow leaving a loop without consideration for the loop control.

Languages that allow local jumpg{o statemeny.

Languagethat allow nonlocal jumps getimp /longjmp in the Cprogramming language).

Languages that support multiple entry and exit points from a function, procedure, subroutine or method.

= =4 =8 =4

6.33.5 Avoiding the vulnerability or mitigating its effects

Use only those features of the programming language #mdibrce a logical structure on the program. The
program flow follows a simple hierarchical model that employs looping constructs stich asepeat , do, and
while .

Softwaredevelopers can avoid the vulnerability or mitigate its ill effects in the following ways:

Avoid using language features suctgato .

Avoid using language features suclcasatinue and break in the middle of loops.
Avoid usig language features that transfer control of the program flow via a jump.
Avoid multiple exit points to a function/procedure/method/subroutine.

1 Avoid multiple entry points to a function/procedure/method/subroutine.

=A =4 =4 =4

6.33.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should support afaor structured programming through their constructs to the extent
possible.

6.34 Passing Parameters and Return Values [CS)
6.34.1 Description of application vulnerability

Nearly every procedural languageovides some method of process abstraction permitting decomposifdhe
flow of control into routines, functions, subprograms, or metho@Sor the purpose of this description, the term
subprogram will be used.Jo have any effect on the computation, the subprogram must change data visible to

76 © ISTIEC2012 ¢ All rights reserve

(6] A WDN PP

© 00 N O

10

11

12
13

14
15
16
17
18

19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35

36
37
38

Baseline Editiol2 TR 24772 WG 23/N @10

the calling program. Itan do this by changing the value of a Honal variable, changing the value of a
parameter, or, in the case of a function, providing a return valBecause different languages use different
mechanisms with different semantics for passing parameterspgrammer using an unfamiliar language may
obtain unexpected results.

6.34.2 Cross reference

JSF AV Rules: 116, 117, and 118

MISRA C 2004: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, and 16.9
MISRA C++ 2008:3-2, 7-1-2, 84-1, 84-2, 84-3, and 84-4

CERT guidéines: EXP1Z and DCL3G3

AdaQualityand Style Guide: 5.2 and 8.3

6.34.3 Mechanism of failure

The mechanisms for parameter passing includdl by referencecall by copyandcall by name The last is so
specialized and supported by so few programming languages that it will not be treated in this description.

In call by reference, the calling program passes the addresses of the arguments to the called subpvaiyeaim.
the sulprogram references the corresponding formal parameter, it is actually sharing data with the calling
program. If the subprogram changes a formal parameter, then the corresponding actual argument is also
changed.If the actual argument is an expressioneotonstant, then the address of a temporary location is
passed to the subprogram; this may be an error in some languages.

In call by copy, the called subprogram does not share data with the calling program. Instead, formal parameters
act as local variabte Values are passed between the actual arguments and the formal parameters by copying.
Some languages may control changes to formal parameters based on labels Bucloais, orinout . There

are three cases to considarall by valudor in parameters;call by resulfor out parameters and function return
values; anctall by valueresultfor inout parameters.For call by value, the calling program evaluates the actual
arguments ad copies the result to the corresponding formal parameters that are then treated as local variables
by the subprogramFor call byesult, the values of the locals corresponding to formal parameters are copied to
the corresponding actual argumentsorcall by valueresult, the values are copied in from the actual arguments

at the beginning of the subprogram's execution and back out to the actual arguments at its termination.

The obvious disadvantage of call by copy is that extra copy operations arechaed execution time is required

to produce the copiesParticularly if parameters represent sizable objects, such as large arrays, the cost of call by
copy can be highFor this reason, many languages also provide the call by reference mechanism. The
disadvantage of call by reference is that the calling program cannot be assured that the subprogram hasn't
changed data that was intended to be unchang&dr example, if an array is passed by reference to a

subprogram intended to sum its elements, the puligram could also change the values of one or more elements

of the array. However, some languages enforce the subprogram's access to the shared data based on the labelin
of actual arguments with modessuch asn , out , orinout or by constant pointers

Another problem with call by reference is unintended aliasing. It is possible that the address of one actual
argument is the same as another actual argument or that two arguments overlap in stokaggoprogram,
assuming the two formal parameters to bestilnct, may treat them inappropriatelyi-or example, if one codes a

© ISTIEC2012¢ All rights reserved 77

A WDN P

©O© 00 N o O

10
11
12

13
14
15
16
17
18

19
20
21
22

23

24

25
26
27

28

29

30
31
32
33
34
35

WG 23/N @10 Baseline Edition 2TR 24772

subprogram to swap two values using the exclusivenethod, then a call tewap(x,x) will zero the value of
X. Aliasing can also occur between arguments andlooal objects.For examge, if a subprogram modifies a

non-local object as a sideffect of its execution, referencing that object by a formal parameter will result in

aliasing and, possibly, unintended results.

Some languages provide only simple mechanisms for passing datbpmgrams, leaving it to the programmer

to synthesize appropriate mechanism®ften, the only available mechanism is to use call by copy to pass small
scalar values or pointer values containing addresses of data structOfesourse, the latter amount® using call
by reference with no checking by the language procesbosuch cases, subprograms can pass back pointers to
anything whatsoever, including data that is corrupted or absent.

Some languages use call by copy for small objects, such as saathcall by reference for large objects, such as
arrays. The choice of mechanism may even be implementatiefined. Because the two mechanisms produce
different results in the presence of aliasing, it is very important to avoid aliasing.

An additionalproblem may occur if the called subprogram fails to assign a value to a formal parameter that the
caller expects as an output from the subprograim.the case of call by reference, the result may be an
uninitialized variable in the calling program. Iretbase of call by copy, the result may be that a legitimate
initialization value provided by the caller is overwritten by an uninitialized value because the called program did
not make an assignment to the parametérhis error may be difficult to detetiirough review because the

failure to initialize is hidden in the subprogram.

An additional complication with subprograms occurs when one or more of the arguments are expressions. In such
cases, the evaluation of one argument might have gffects that esult in a change to the value of another or
unintended aliasingImplementation choices regarding order of evaluation could affect the result of the
computation. This particular problem is describedSideeffects and Order of Evaluatiaause[SAM].

6.34.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that provide mechanisms for defining subprograms where the data passes between the calling
program and the subprogram via parameters and return values. This includes methods in many popular
objectoriented languages.

6.34.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its illot$fen the following ways:

1 Use available mechanisms to label parameters as constants or with modas Jigat , orinout

1 When a choice of mechanisms is available, pass small simple objects using call by copy.

1 When a choice of mechanisms is available #redcomputational cost of copying is tolerable, pass larger
objects using call by copy.

1 When the choice of language or the computational cost of copying forbids using call by copy, then take
safeguards to prevent aliasing:

78 © ISTIEC2012 ¢ All rights reserve

0O N OB WN PP

©

10

11
12

13

14

15
16
17
18
19

20

21
22
23
24
25
26
27

28

29
30
31
32

33
34
35
36

Baseline Editiol2 TR 24772 WG 23/N @10

o Minimize sideeffects of subprogams on noAocal objects; when sideffects are coded, ensure
that the affected noHocal objects are not passed as parameters using call by reference.
o0 To avoid unintentional aliasing, avoid using expressions or functions as actual arguments; instead
assgn the result of the expression to a temporary local and pass the local.
o Utilize tooling or other forms of analysis to ensure that fafivious instances of aliasing are
absent.
o Perform reviews or analysis to determine that called subprogriafifl their responsibilities to
assign values to all output parameters.

6.34.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Programming language specifications could provide labsleh asn , out , ardinout T that control
0KS &adzoLINBINI YQa FO0O0Saa G2 Ada F2NXIE LI NI YSGESN

6.35 Dangling References to Stack Frames [DCM]

6.35.1 Description of application vulnerability

Many languages allow treating the address of a local variable as a value stored in other variables. Examples are
the application of the address operator irb€C+t+oroftlS W! O0S&aa 2NJ W! RRN®@a F GaN
languages, this facility is also used to model thelmgleference mechanism by passing the address of the actual
parameter byvalue. An obvious safety requirement is that the stored addrdsalsot be used after the lifetime

of the local variable has expiredt KA & aAlddzZ 6A2y OFy 06S RSAONAOGSR | a |

6.35.2 Cross reference

CWE:
562. Return of Stack Variable Address
JSF AV Rule: 173
MISRA C 2004: 17.6 and 21.1
MISRA C++ 2008:3-1, 7-5-1, 7-5-2, and 75-3
CERT C guililees: EXP3& and DCL3C
AdaQualityand Style Guide: 7.6.7, 7.6.8, and 10.7.6

6.35.3 Mechanism of failure

The consequences of dangling references to the stack come in two variants: a detiécaiipipredictable
variant, which therefore can be exploited, and an intermittent, rdterministic variant, which is next to
impossible to elicit during testingr'he following code sample illustrates the two variants; the behaviour is not
languagespedfic:

struct s { e };

typedef struct s array_type[1000];
array_type* ptr;

array_type* F()

© ISTIEC2012¢ All rights reserved 79

O©ooO~NOOUTA, WNE

13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

34

35

36
37
38
39

40

41

WG 23/N @10 Baseline Edition 2TR 24772

{
struct s Arr[1000];
ptr = &Arr; /I Risk of variant 1;
return &Arr; /I Risk of variant 2;

)

é
struct s secret;
array_type* ptr2;
ptr2 =F();
secret = (*ptr2)[10]; /[Fault of variant 2

e
secret = (*ptr)[10]; /I Fault of variant 1

The risk of variant 1 is the assignment of the addreg&rofto a pointer variable that survives the lifetime of

Arr . The fault is the subsequénse of the dangling reference to the stack, which references memory since
altered by other calls and possibly validly owned by other routidespart of a calback, the fault allows

systematic examination of portions of the stack contents withoutgeigng an arraypoundschecking violation.

Thus, this vulnerability is easily exploitabkss a fault, the effects can be most astounding, as memory gets
corrupted by completely unrelated code portion@A lifetime check as part of pointer assignmenngarevent

the risk. In many casesych aghe situations above, the check is statically decidable by a compiler. However, for
the general case, a dynamic check is needed to ensure that the copied pointer value lives no longer than the
designated object.)

¢CKS NARal 2F QGFINRFYyG W Ada Yy ARAZ2Y aa StGaloidiayexpefsibe ¢ A f R
copy of a function result, as long as it is consumed before the next routine call od&wgsdiom is based on the
ill-founded assumptio that the stack will not be affected by anything until this next call is isslibd.
FaadzYLJiA2y Aa FlLftaSy K2eSOSNE AT Fy AydSNNHzLIG 2 OO0dzN
stealing > gikusiGgkhe current stack to satisfy iteemory requirements.Thus, the value oArr can be

overwritten before it can be retrieved after the call &n As this fault will only occur if the interrupt arrives after

the call has returned but before the returned result is consumed, the fault Fdyhigtermittent and next to

impossible to recreate during testing.Thus, it is unlikely to be exploitable, but also exceedingly hard to find by
testing. It can begin to occur after a completely unrelated interrupt handler has been coded or al@ngd.

static analysis can relatively easily detect the danger (unless the code combines it with risks of vaBamé.).
compilers issue warnings for this situation; such warnings need to be headddsome forms of static analysis

are effective in identifjng such problems.

6.35.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

i The address of a local entity (or formal parameter) of a routine can be obtainestaratd! in a variable
or can be returned by this routine as a result.

1 No check is made that the lifetime of the variable receiving the address is no larger than the lifetime of
the designated entity.

6.35.5 Avoiding the vulnerability or mitigating its effec ts

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

80 © ISTIEC2012 ¢ All rights reserve

a b~ W DN P

10
11

12

13

14
15
16
17
18

19

20
21
22
23
24
25
26
27

28

29
30
31
32
33
34

Baseline Editiol2 TR 24772 WG 23/N @10

1 Do not use the address of locally declared entities as storable, assignable or returnable value (except
where idioms of the language make it unavoidable).

1 Where unavoidable, ensure that the lifetime of the variable containing the address is completely enclosed
by the lifetime of the designated object.

1 Never return the address of a local variable as the result of a function call.

6.35.6 Implications for stan dardization
In future standardizatiomctivities the following items should be considered:

1 Do not provide means to obtain the address of a locally declared entity as a storable value; or

1 Define implicit checks to implement the assurance of enclosedniteéxpressed isub-clause5 of this
vulnerability. Note that, in many cases, the check is statically decidable, for example, when the address of
a local entity is taken as part of a return statement or expression.

6.36 Subprogram Signature Mismatch [OTR]

6.36.1 Description of application vulnerability

If a subprogram is called with a different number of parameters than it expects, or widmgers of different
types than it expects, then the results will be incorreDepending on the language, the operating environment,
and the implementation, the error might be as benign as a diagnostic message or as extreme as a program
continuing to exeute with a corrupted stackThe possibility of a corrupted stack provides opportunities for
penetration.

6.36.2 Cross reference

CWE:
628. Function Call with Incorrectly Specified Arguments
686. Function Call with Incorrect Argument Type
683. Function @ll with Incorrect Order of Arguments
JSF AV Rule: 108
MISRA C 2004: 8.1, 8.2, 8.3, 16.1, 16.3, 16.4, 4:609,6.6
MISRA C++ 2008:3-2, 32-1, 32-2, 32-3, 32-4, 33-1, 39-1, 83-1, 84-1, and 84-2
CERT C guiliiees: DCL3L, and DCL36

6.36.3 Mechanism of failure

When a subprogram is called, the actual arguments of the call are pushed on to the executioW#ackthe
subprogram terminates, the formal parameters are popped off the stéfdkie number and type of the actual
arguments do not ratch the number and type of the formal parameters, thaapending upon the calling
mechanism used by the language translatbg push and the pop will not beonsistentand, if so,the stack will

be corrupted. Stack corruption can lead topredictable execution of the program and can provide opportunities
for execution of unintended or malicious code.

© ISTIEC2012¢ All rights reserved 81

O OB~ WDN P

10
11
12
13

14

15

16
17
18
19
20
21
22
23

24

25

26
27
28

29

30

31
32
33

WG 23/N @10 Baseline Edition 2TR 24772

The compilation systems for many languages and implementations can check to ensure that the list of actual
parameters and any expected retunmatch the declared set of formal parameters and return value (the
subprogram signaturein both number and type(In some cases, programmers should observe a set of
conventions to ensure that this is truebJowever, when the call is being made to anezrtlly compiled
subprogram, an objeetode library, or a module compiled in a different language, the programmer must take
additional steps to ensure a match between the expectations of the caller and the called subprogram.

6.36.4 Applicable language char acteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

f Languages that do noéquire their implementations to ensurthat the number and types of actual
arguments are equal to the number ahgpes of the formal parameters.

1 Implementations that permit programs to call subprograms that have been externally compiled (without
a means to check for a matching subprogram signature), subprograms in object code libratiagy
subprograms compileth other languages.

6.36.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the netability or mitigate its ileffects in the following ways:

 Take advantage of any mechanism provided by the language to ensurguthfabgramsignatures
match.

1 Avoid any language features that permit variable numbers of actual arguments without a method of
enforcing a match for any instance of a subprogram call.

! Take advantage of any language or implementation feature that would guaramiéghing the
subprogram signature in linkirtg other languages or to separately compiled modules.

1 Intensively review subprogram calls where the match is not guaranteed by tooling

1 Ensure that only a trusted source is used when usingstandard importednodules.

6.36.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

9 Language specifiers could ensure that the signatures of subprograms match within a single compilation
unit and could providedatures for asserting and checking the match with externally compiled
subprograms.

6.37 Recursion [GDL]
6.37.1 Description of application vulnerability

Recursion is an elegant mathatical mechanism for defining the values of some functidhgs tempting to
write code that mirrors the mathematicddowever, the use of recursion in a computer can have a profound
effect on the consumption of finite resources, leading to denial ofise.

82 © ISTIEC2012 ¢ All rights reserve

0 N Ok WDN

10
11
12
13
14
15
16

17
18
19
20
21
22

23

24

25

26

27

28
29
30
31
32
33
34

Baseline Editiol2 TR 24772 WG 23/N @10

6.37.2 Cross reference

CWE:

674. Uncontrolled Recursion
JSF AV Rule: 119
MISRA C 2004: 16.2
MISRA C++ 2008:574
CERT C guiliies: MEMOSC
AdaQualityand Style Guide: 5.6.6

6.37.3 Mechanism of failure

Recursion provides for the economical definit of some mathematical functiongdowever, economical

definition and economical calculation are two different subjedtds tempting to calculate the value of a

recursive function using recursive subprograms because the expression in the prograamgimage is
straightforward and easy to understantHowever, the impact on finite computing resources can be profound.
Each invocation of a recursive subprogram may result in the creation of a new stack frame, complete with local
variables.If stack spee is limited and the calculation of some values will lead to an exhaustion of resources
resulting in the program terminating.

In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this i
not true when considering computer operations generally, especially when processing error coadiiur

example, finalization of a computing context after treating an error condition might result in recussion s
attempting torecover resourcedy closing a file after an error was encountered in closing the same file).

Although such situations may have other problems, they typically do not result in exhaustion of resources but
may otherwise result in a denial of service.

6.37.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Any language that permits the recursive invocation of subprograms.

6.37.5 Avoiding the vulnerability or mitigatin g its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

M Minimize the use of recursion.

1 Converting recursive calculations to the corresponding iterative calculalioprinciple, any recursive
calcdation can be remodeled as an iterative calculation which will have a smaller impact on some
computing resources but which may be harder for a human to compreh&hd.cost to human
understanding must be weighed against the practical limits of compuésgurce.

1 In cases where the depth of recursion can be shown to be statically bounded by a tolerable number, then
recursion may be acceptable, but should be documented for the use of maintainers.

© ISTIEC2012¢ All rights reserved 83

10
11
12

13

14
15
16
17
18
19

20

21
22
23
24

25
26

27
28
29
30
31
32

33
34
35

WG 23/N @10 Baseline Edition 2TR 24772

It should be noted that some languages or implementationsjg® special (more economical) treatment of a
form of recursion known asil-recursion In this case, the impact on computing economy is redud&ftien
using such a language, tail recursion may be preferred to an iterative caculat

6.37.6 Implications for standardization
[None]

6.38 Ignored Error Status and Unhandled Exceptions [OYB]

6.38.1 Description of application vulnerability

Unpredicted faults and exceptional situations arise during the execution of code, preventing the intended
functioning of the codeThey are detected and reported by the language implementation or by exquidé
written by the user. Different strategies and language constructs are used to report such errors and to take
remedial action.Serious vulnerabilities arise when detected errors are reported but ignored or not properly
handled.

6.38.2 Cross reference

CWE:
754. Improper Check for Unusual or Exceptional Conditions
JSF AV Rules: 115 and 208
MISRA C 20046.10
MISRA C++ 2008:-B=2 and 193-1
CERT C guililees: DCLOZ, ERROGQ, and ERRER2

6.38.3 Mechanism of failure

The fundamental mechanism of liaie is that the program does not react to a detected error or reacts
inappropriately to it. Execution may continue outside the envelope provided by its specification, making
additional errors or serious malfunction of the software likely. Alternatiastgcution may terminate. The
mechanism can be easily exploited to perform deniaservice attacks.

The specific mechanism of failure depends on the error reporting and handling scheme provided by a language or
applied idiomatically by its users.

In langiages that expect routines to report errors via status variables, return codes, or thoealderror

indicators, the error indications need to be checked after each éalithese frequent checks cost execution time
and clutter the code immensely to dealth situations that may occur rarely, programmers are reluctant to apply
the scheme systematically and consistentRailure to check for and handéa arisingerror condition continues
execution as if the error never occurreth most cases, this canued execution in an illefined program state

will sooner or later fail, possibly catastrophically.

The raising and handling of exceptions was introduced into languages to address these prdiiiegimindle
the exceptional code in exception handlefsey need not cost execution time if no error is present, and they will
not allow the program to continue execution by default when an error occurs, since upon raising the exception,

84 © ISTIEC2012 ¢ All rights reserve

N o ok WODN P

(0]

10
11

12
13
14
15

16

17
18

19

20
21
22
23
24
25
26
27
28
29

30

31
32
33
34
35
36

Baseline Editiol2 TR 24772 WG 23/N @10

control of execution is automatically transferred to a handler for theepxion found on the call stackThe risk

and the failure mechanism is that there is no such handler (unless the language enforces restrictions that
guarantees its existence), resulting in the termination of the current thread of conMieb, a handlethat is

found might not be geared to handle the multitude of error situations that are vectored to it. Exception handling
is therefore in practice more congt for the programmer than, for examplde use of status pameters.
Furthermore, differenfanguages provide exceptiehandling mechanisms that differ in details of their design,
which in turn may lead to misunderstandings by the programmer.

The cause for the failure might be simply laziness or ignorance on the part of the programmer, or, more
commanly, a mismatch in the expectations of where fault detection and fault recovery is to be &amgcularly
when components meet that employ different fault detection and reporting strategies, the opportunity for
mishandling recognized errors increases aneates vulnerabilities.

Another cause of the failure is the scant attention that many library providers pay to describe all error situations
that calls on their routines might encounter and report. In this case, the caller cannot possibly react deralibly
error situations that might ariseAs yet another cause, the error information provided when the error occurs may
be insufficiently complete to allow recovery from the error.

6.38.4 Applicable language characteristics

Whether supported by the langge or not, error reporting and handling is idiomatically present in all languages.
Of course, vulnerabilities caused by exceptions require a language that supports exceptions.

6.38.5 Avoiding the vulnerability or mitigating its effects

Given the varietyf error handling mechanisms, it is difficult to provide general guideliikEsvever, dealing with
exception handling in some languages can stress the capabilities of static analysis tools and can, in some cases,
reduce the effectiveness of their analysilnversely, the use of error status variables can lead to confusingly
complicated control structures, particularly when recovery is not possible locHtlgrefore, for situations where

the highest of reliability is required, the decision for or aga@maeption handling deserves careful thought. In

any case, exceptiehandling mechanisms should be reserved for truly unexpected situations and other situations
where no local recovery is possibi8ituations which are merely unusual, like the end efdibndition, should be
treated by explicit testing either prior to the call which might raise the error or immediately afterwalr.

general, error detection, reporting, correction, and recovery should not be a late opportunisticradulit should

be anintegral part of a system design.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Checking error return values or auxiliary status variables following a call to a subprogram is mandatory
unless it can bedemonstrated that the error condition is impossible.

1 Equally, exceptions need to be handled by the exception handlers of an enclosing construct as close as
possible to the origin of the exception but as far out as necessary to be able to deal withdhe err

1 For each routine, all error conditions need to d@cumentedand matching error detection and reporting
needs to be implemented, providing sufficient information for handling the error situation.

© ISTIEC2012¢ All rights reserved 85

© 00N O Ol WDN P

e e
N RO

13

14

15
16
17

18

19

20
21
22
23
24
25
26
27
28

29
30
31

32
33
34
35

WG 23/N @10 Baseline Edition 2TR 24772

1 When execution within a particular context is abandomlek to an exception or error condition, it is
important to finalize the context by closing open files, releasing resources and restoring any invariants
associated with the context.

9 Itis often not appropriate to repair an error situation and retry theeggttion. It is usually a better
solution to finalize and terminate the current context and retreat to a context where the fault can be
handled completely.

1 Error checking provided by the language, the software system, or the hardware should never beddisabl
in the absence of a conclusive analysis that the error condition is rendered impossible.

1 Because of the complexity of error handling, careful review of all error handling mechanisms is
appropriate.

1 In applications with the highest requirements foriedlility, defensen-depth approaches are often
appropriate, for example, checking and handling errors even if thought to be impossible.

6.38.6 Implications for standardization
In future standardizatiomctivities the following items should be considered

1 A standardized set of mechanisms for detecting and treating error conditions should be developed so that
all languages to the extent possible could use thdrhis does not mean that all languages should use the
same mechanisms as there should be a wgrieut each of the mechanisms should be standardized.

6.39 Termination Strategy [REU]

6.39.1 Description of application vulnerability

Expectations that a syasin will be dependable are based on the confidence that the system will operate as
expected and not fail in normal use. The dependability of a syatathrits fault tolerancean be measured

through the component pat$ reliability, availability, safety arscurity Reliability ishe ability of a system or
component to perform its required functions under stated conditions for a specified period oflif&& 1990
glossary]. Availability is how timely and reliable the system is to its intended usdlsofBloese factors matter
highly in systems used for safety and security. In spite of the best intentions, systems may encounter a failure,
either from internally poorly written software or external forces such as power outages/variations, floods, or
other natural disasters. The reaction to a fault can affect the performance of a system and in particular, the
safety and security of the system and its users.

When the software does not terminate in the planned mechanism, safety or security is comproasdading in
an unspecified way interferes with the alternative recovery featulessafetyrelated systems the results can be
catastrophic: for other systems the result can mean failure of the complete system

For termination issues associated with tijple threads, multiple processors or interrupfsosee 8.4
Concurrency Directed Termination [CGT] and 8.6 Concurrerfesemature Termination [CGTHituations that
cause an application to terminate unexpectedly or that cause an application to moin&te because of other
vulnerabilities are covered in those vulnerabilities.

86 © ISTIEC2012 ¢ All rights reserve

O OB WN

10
11
12
13

14
15
16
17
18
19
20
21
22
23

24
25
26
27

28

29

30

31

32
33
34
35
36

Baseline Editiol2 TR 24772 WG 23/N @10

6.39.2 Cross reference

JSF AV Rule: 24

MISRA C 2004: 20.11

MISRA C++ 2008:32, 155-2, 155-3, and 180-3
CERT C guiliimes: ERROZ, ERROE and ENV3E
AdaQualityand Sty¢ Guide: 5.8 and 7.5

6.39.3 Mechanism of failure

The reactiorto a fault in a system can depend on the criticality of the part in which the fault originsitben a
program consists of several tasks, each task may be critical, or not. If a taskak itritiay or may not be
restartable by the rest of the program. Ideally, a task that detects a fault within itself should be able to halt
leaving its resources available for use by the rest of the program, halt clearing away its resources, or halt the
entire program.The latency of task termination and whether tasks can ignore termination signals should be
clearly specifiedHaving inconsistent reactions to a fault can potentially be a vulnerability.

When a fault is detected, there are many ways in wlaidystem can reaciThe quickest and most noticeable

way is to fail hard, also known as fail fast or fail stop. The reaction to a detected fault is to immediately halt the
system. Alternatively, the reaction to a detected fault could be to fail sdfe sjystem would keep working with

the faults present, but the performance of the system would be degraded. Systems used in a high availability
environment such as telephone switching centerspenmerce or other "always available" applicatiomgould

likely use a fail soft approach. What is actually done in a fail soft approach can vary depending on whether the
system is used for safety critical or security critical purposes. Faafailsystems, such as flight controllers,

traffic signals, or medicahonitoring systems, there would be no effort to meet normal operational requirements,
but rather to limit the damage or danger caused by the fault. A system that fails securely, such as cryptologic
systems, would maintain maximum seitywhen a fault is detected, possibly through a denial of service.

For termination issues associated with multiple threads, multiple processors or intealgoisee 8.4

Concurrency Directed Termination [CGT] and 8.6 Concurrerfesemature TerminatiofiCGT]. Situations that
cause an application to terminate unexpectedly or that cause an application to not terminate because of other
vulnerabilities are covered in those vulnerabilities.

6.39.4 Applicable language characteristics
This vulnerability desgation is intended to be applicable to all languages.
6.39.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 A strategy for fault handling should be déed. Consistency in fault handling should be the same with
respect to critically similar parts.

1 A multitiered approach of fault prevention, fault datiion and fault reaction should be used.

1 Systemdefined components that assist in uniformity of faultatbing should be usedhen available.For
one exampledesigning druntime constraint handler'(as describeéh ISO/IEC TR 2473113]) permits

© ISTIEC2012¢ All rights reserved 87

00 ~NOoO O WDN P

10

11
12

13

14

15
16
17
18
19

20

21
22
23
24
25

26

27
28
29
30
31

32
33

34

WG 23/N @10 Baseline Edition 2TR 24772

the application to intercept various erroneous situatiarsd perform one consistent response, such as
flushing a previous transaction amd-starting at the next one.
1 When there are multiple tasks, a fatitindling policy should be specified whereby a task may
0 Halt, and keep its resources available for other tasks (perhaps permitting restarting of the faulting
task)
o0 Halt and remove its resources (perhaps to allow other tasks to use the resources so freed, or to
allow a recreation of the task)
0 Halt, and signal the rest of the program to likewise halt.

6.39.6 Implications for standardization
In future standardiationactivities the following items should be considered:

1 Languages should consider providing a means to perform fault handligrgninology and the means
should be coordinated with other languages.

6.40 Type-breaking Reinterpretation of Data [AMV]

6.40.1 Description of application vulnerability

In most cases, objects in programs are assigned locations in processor $torede their value.If the same
storage space is assigned to more than one objextther statically or temporarily then a change in the value of
one object will have an effect on the value of the oth&urthermore, if the representation of the valué an
object is reinterpreted as being the representation of the value of an object with a different type, unexpected
results may occur

6.40.2 Cross reference

JSF AV Rules 153 and183

MISRA 2004: 18.2, 18.3, ah8.4

MISRA C++ 200841 to 45-3, 410-1,4-10-2, and 50-3 to 50-9
CERT C guililees: MEM0O8C

AdaQualityand Style Guide: 7.6.7 and 7.6.8

6.40.3 Mechanism of failure

Sometimes there is a legitimate need for applications to place different interpretations upon the same stored
representation of dta. The most fundamental example is a program loader that treats a binary image of a
program as data by loading it, and then treats it as a program by invokiMp#t programming languages permit
type-breaking reinterpretation of data, however, som#ear less error prone alternatives for commonly
encountered situations.

Typebreaking reinterpretation of representation presents obstacles to human understanding of the code, the
ability of tools to perform effective static analysis, and the ability afecoptimizers to do their job

Examples include:

88 © ISTIEC2012 ¢ All rights reserve

o OBk W DN PP

(o]

10

11

12

13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Baseline Editiol2 TR 24772 WG 23/N @10

1 Providing alternative mappings of objects into blocks of storage performed either statgaily &s
Fortrancommon) or dynamicallyquch agointers).

1 Union types, particularly unions thdb not have a discriminant stored as part of the data structure.

1 Operations that permit a stored value to be interpreted as a different tgpelf adreating the
representation of a pointer as an integer).

In all of these cases accessing the value oftaeob may produce an unanticipated result.

A related problem, the aliasing of parameters, occurs in languages that permit call by reference because
supposedly distinct parameters might refer to the same storage area, or a parameter and@cabobject night
refer to the same storage area. That vulnerability is describ&hssing Parameters and Return Val@&Ss]]

6.40.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the followingctdréstics:
1 A programming language that permits multiple interpretations of the same bit pattern.

6.40.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following: way

1 Programmers should avoid reinterpretation performed as a matter of convenience; for example, using an
integer pointer to manipulate character string data should be avoidafien typebreaking
reinterpretation is necessary, it should be carefully docated in the code. However this vulnerability
cannot becompletely avoided because some applications view stored data in alternative ways.

1 When using union types it is preferable to use discriminated unidihgs is dype of a union where a
stored valuendicates which interpretation is to be placed upon the dasame languagesiich as
variant records in Ada) enforce the view of data indicated by the value of the discrimilfime.
language does not enforce the interpretatidior example equivalere in Fortrarand union in Gnd
C+4, then the code should implement an explicit discriminant and check its value before accessing the
data in the union, or use some other mechanism to ensure that correct interpoetégiplaced upon the
data value.

1 Operations that reinterpret the same stored value as representing a different type should be avoided. It
is easier to avoid such operations when the language clearly identifies tRemexample, the name of
Adds Unchecked_Conversion function explicitly warns of the problemA much more difficult
situation occurs when pointers are used to achieve type reinterpretati®ome languages perform type
checking of pointers and placestrictions on the ability of pointers to access arbitrary locations in
storage. Others permit the free use of pointer$n such cases, code must be carefully reviewed in a
search for unintended reinterpretation of stored valuekherefore it is impomnt to explicitly comment
the source code wherimtendedreinterpretations occur.

9 Static analysis tools may be helpful in locating situations where unintended reinterpretation o€urs.
the other hand, the presence of reinterpretation greatly complicatiedic analysis for other problems, so
it may be appropriate to segregate intended reinterpretation operations into distinct subprograms.

© ISTIEC2012¢ All rights reserved 89

=

N

0 N O O~ W

10

11
12
13
14
15

16

17
18
19
20
21
22

23

24
25
26
27
28

29
30

31

32

33
34

WG 23/N @10

Baseline Edition 2TR 24772

6.40.6 Implications for standardization

In future standardizatiomctivities the following items should be consideke

9 Because the ability to perform reinterpretation is sometimes necessary, but the need for it is rare,
programming language designers might consider putting caution labels on operations that permit
reinterpretation. For example, the operation in Ada thagrmits unconstrained reinterpretation is called
Unchecked_Conversion
Because of the difficulties with undiscriminated unions, programming language designers might consider
offering union types that include distinct discriminants with appropriate enforest of access to objects.

6.41 Memory Leak

[XYL]

6.41.1 Description of application vulnerability

A memory leak occurs when software does not release allocated memory afeasiés to be used. Repeated
occurrences of a memory leak can consume considerable amounts of available mé&mogmory leak can be
exploitedby attackers to generate deniaf-serviceby causing the program to execute repeatedly a sequence
that triggersthe leak. Moreover, a memory leak can cause any loagning critical program to shutdown
prematurely.

6.41.2 Cross reference

CWE:

nnMd Cl Af dzNB (2

JSF AV Rule: 206
MISRA C 2004: 20.4

wSt SIas

CERT @uiddines: MEM0GC and MEM31LC
AdaQualityand Style Guide: 5.4.5, 5.9.2, and 7.3.3

6.41.3 Mechanism of failure

As a process or system runs, any memory taken from dynamic memory and not returned or reclaimed (by the
runtime system or a garbage collectaifler it ceases to be used, may result in future memaory allocation requests
failing for lack of free spacelternatively, memory claimed and returned can cause the heap to fragment, which

aSY2NE

. 8FT2NB wSY20Aiy3

will eventually result in an inability to take the necessary sineage. Either condition will result in a memory
exhaustion exception, and program termination or a system crash.

If an attacker can determine the cause of an existing memory leak, the attacker may be able to cause the
application to leak quickly and ¢hefore cause the application to crash

6.41.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that support mechanisms to dynamically allocate meamatyeclaim memory under program

90

control.

© ISQIEC2012 ¢ All rights reserve

[F

=

© 00 N O 0O W

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24

25
26
27
28
29

30

31

32
33
34
35

36
37

Baseline Editiol2 TR 24772 WG 23/N @10

6.41.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use ofgarbagecollectors that reclaim memory that Wwihever be used by the application again. Some
garbage collectors are part of the language while others arecad

1 In systems with garbage collectors, set all #iocal pointers or references to null, when the designated
data is no longer needed, sintiee data will not be garbageollected otherwise. In systems without
garbage collectorgause deallocation of the data before the last pointer or reference to the data is lost.

1 Allocating and freeing memory in different modules and levels of abstranteymake it difficult for
developers to match requests to free storage with the appropriate storage allocation reqlieist may
cause confusion regarding when and if a block of memory has been allocated or freed, leading to memon
leaks. To avoid thesétgations, it is recommended that memory be allocated and freed at the same level
of abstraction, and ideally in the same code module.

i Storage pools are a specialized memory mechanism where all of the memory associated with a class of
objects is allocateffom a specific bounded regionWhen used with strong typing one can ensure a
strong relationship between pointers and the space accessed such that storage exhaustion in one pool
does not affect the code operating on other memory.

1 Memory leaks can be elimated by avoiding the use of dynamically allocated storage entirely, or by doing
initial allocation exclusively and never allocating once the main execution commences. Focstfety
systems and long running systems, the use of dynamic memory éststways prohibited, or restricted
to the initialization phase of execution.

1 Use static analysisvhich can sometimes detewsthenallocated storage is no longer used and has not
been freed.

6.41.6 Implications for standardization

In future standardizatio activities the following items should be considered:

1 Languages can provide syntax and semantics to guarantee pregi@grthat dynamic memory is not
used (such as the configuratipmagmas feature offered by some programming languages

1 Languages can document or specify that implementations must document choices for dynamic memory
management algorithms, to hope designers decide on appropriate usage patterns and recovery
techniques as necessary

6.42 Templates and Generics [SYM]

6.42.1 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined parameterized by type
and then nstantiated for specific types. INCk#/ R NBf F § SR f | y3dzZ 3Sa> (KBS alSy RN
AdaandJava G I SWRNN TR AR KIF Ay 3 (2 1 SHEQX oMW (dkk/Ea WAOSHdzE $
referred to collectively as generics.

Used well, generics can make code clearer, more predictable and easier to malvsaith badly, they can have
the reverse effect, making code difficult to review and maintigading to the possibility of program error.

© ISTIEC2012¢ All rights reserved 91

© 00 N O

10
11

12
13
14
15
16

17
18
19
20
21
22
23
24
25
26

27
28

29
30
31
32
33
34
35
36
37

WG 23/N @10 Baseline Edition 2TR 24772

6.42.2 Cross reference

JSF AV Rules: 101, 102, 103, 104, and 105
MISRA C++ 20084-6-1, 146-2, 147-1 to 147-3, 148-1, and 148-2
Ada Quality and Style Guide: 8.3.1 through 8.3.8, and 8.4.2

6.42 .3 Mechanism of failure

The value of generics comes from having a single piece of code that supports some behaviour in a type
independent manner. This simplifies development and maintenance of the dodkould also assist in the
understanding of the code during riew and maintenance, by providing the same behaviour for all types with
which it is instantiated.

Problems arise when the use of a generic actually makes the code harder to understand during review and
maintenance, by not providing consistent behaviour.

In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated
with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these
assumptions are not met, thesult is likely to be a compiler erroFor example if the sort function is instantiated
GAGK | dzZaSNJ RSTFAYSR (&L {KIKSNR SBWARHIdZZKS B S2 # INBF 3 il
error, this can be regarded as a development issunel not a software vulnerability.

Confusion, and hence potential vulnerability, can arise where the instantiated code is appareatily but

R2Say Qi NBadz G Fdrgxantple, @ Bevidrid dass Mafire ARt Nfnembers, a subset ofralitich

on a particular property of the instantiation type (such as a generic container class with a sort member function,
only the sort function relies on the instantiating type having a defined relational operdtogome languages,
suchasC& AF (KS ISYSNARO Aa AyaidlyaAalrdiSR gA0GK | GeLS G
never subsequently makes use of the subset of members that rely on the property of the instantiating type, the
code will compile and execute (for exampllee generic container is instantiated with a user defined class that
R2SayQi RSFAYS | NBftFGA2ylFf 2LISNI G§2NE o0dzi (V&1 LINE 3N
the code is reviewed the generic class will appear to reference ametber 4 KS Ay aidl yiAl GAy 3
exist.

The problem as described in the two prior paragraphs can be reduced by a language feature (sucorsais
language feature being designed by the C++ committee).

Similar confusion can arise if the languggemits specific elements of a generic to be explicitly defined, rather

than using the common code, so that behaviour is not consistent for all instantiattrsexample, for the same

generic container class, the sort member normally sorts the elenafrttse container into ascending order. In
flIy3da 3Sa &4dzOK | a /bbb I WaLISOAlLIE OFasSQ OFy 6S ONBI
C2NJ SEI YLX ST GKS &2NI YSYOSNI F2NJ | Wt 2 htbehavid gay I A y S
sorting the elements into descendingorddr.LISOA I f AT I GA2Yy (GKIG R2Say Qi | FFSC
instantiation is not an issueAgain, for C++, there are some irregularities in the semantics of arrays and pointers

that can ead to the generic having different behaviour for different, but apparently very similar, typesich

cases, specialization can be used to enforce consistent behaviour.

92 © ISTIEC2012 ¢ All rights reserve

N

o 01 W

10
11
12
13

14

15

16
17
18
19
20
21
22
23

24

25

26
27
28
29
30
31
32

Baseline Editiol2 TR 24772 WG 23/N @10

6.42.4 Applicable language characteristics
This vulnerability is intended to be djgable to languages with the following characteristics:

1 Languages that permit definitions of objects or functions to be parameterized by type, for later
instantiation with specific types, such as:
0 Templatesn C++
o Generics in Ada, Java.

6.42.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Document the properties of an instantiating type necessary for a generic to be valid.

9 If an instantiating type has the required properties, the whole of the generic should be ensured to be
valid, whether actually used in the program or not.

T t NEFTSNIofé& | g2ARI odzi |G €SlIad OF NSFdzZ & R2O0dzY¢
asOATAO (eLIS R2SayQi oSKIF@S | (F2N 20K

ax
>
e
puls
N
(s}
ax

6.42.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language specifiers should standardize on a common, uniform terminology tobdescri
generics/templates so that programmers experienced in one language can reliably learn and refer to the
type system of another language that has the same concept, but with a different name.

1 Language specifiers should design generics in such a way thatteampt to instantiate a generic with
constructs that do not provide the required capabilities results in a contipile error.

1 Language specifiers should provide an assertion mechanism for checking propertiegiateufor those
properties that canot be checked at compile timdt should be possible to inhibit assertion checking if
efficiency is a concern.

6.43 Inheritance [RIP]

6.43.1 Description of application vulnerabi lity

Inheritance the ability to create enhanced and/or restricted object classes based on existing object classes can
introduce a number of vulnerabilities, both inadvertent and malicious. Because Inheritance allows the overriding
of methods of the parent class and because object oriented systems are designed to separate and encapsulate
code and data, it can be difficult to determine where in the hierarchy an invoked method is actually defined. Also
since an overriding method doestroeed to call the method in the parent class that has been overridden,

essential initialization and manipulation of class data may be bypassed. This can be especially dangerous during
constructor and destructor methods.

© ISTIEC2012¢ All rights reserved 93

10

11
12
13
14
15
16
17
18

19
20

21

22

23

24

25

26
27
28
29
30
31

32

33

WG 23/N @10 Baseline Edition 2TR 24772

Languages that allow multiple infiance add additional complexities to the resolution of method invocations.
Different object brokerage systems may resolve the method identity to different classes, based on how the
inheritance tree is traversed.

6.43.2 Cross reference

JSF AV Rules: 8697
MISRA C++ 2008:1012, 83-1, 101-1 to 101-3, and 163-1 to 103-3
AdaQualityand Style Guide: 9 (complete clause)

6.43.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact sgéégyrin
several ways:

1 Execution of malicious redefinitions, this can occur through the insertion of a class into the class hierarchy
that overrides commonly called methods in the parent classes.

1 Accidental redefinition, where a method is defined thatdmartently overrides a method that has already
been defined in a parent class.

9 Accidental failure of redefinition, when a method is incorrectly named or the parameters are not defined
properly, and thus does not override a method in a parent class.

9 Breakimg of class invariants, this can be caused by redefining methods that initialize or validate class data
without including that initialization or validation in the overriding methods.

These vulnerabilities can increase dramatically as the complexity ofeharthy increases, especially in the use
of multiple inheritance.

6.43.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that allow single and rtiple inheritances.

6.43.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Avoid the use of multiple inheritance whenever possible.

1 Provide complete dagnentation of all encapsulated data, and how each method affects that data for
each object in the hierarchy.

1 Inherit only from trusted sources, and, whenever possible, check the version of the parent classes during
compilation and/or initialization.

1 Provice a method that provides versioning information for each class.

6.43.6 Implications for standardization

In future standardization activities, the following items should be considered:

94 © ISTIEC2012 ¢ All rights reserve

W N -

© 00 N O

10

11

12

13
14
15
16

17
18
19
20

21
22

23

24

25
26
27

28

29

30
31

Baseline Editiol2 TR 24772 WG 23/N @10

9 Language specification should include the definition of a common véngjonethod.
9 Compilers should provide an option to report the class in which a resolved method resides.
1 Runtime environments should provide a trace of all runtime method resolutions.

6.44 Extra Intrinsics [LRM]

6.44.1 Description of application vulnerability

Most languages define intrinsic procedures, which are easily available, or always "simply available”, to any
translation unit. If a translator extends the set ofrinsics beyond those defined by the standard, and the

standard specifies that intrinsics are selected before procedures of the same signature defined by the application
a different procedure may be unexpectedly used when switching between translators.

6.44.2 Cross reference
[None]
6.44.3 Mechanism of failure

Most standard programming languages define a set of intrinsic procedures which may be used in any application
Some language standards allow a translator to extend this set of intrinsic procedinres. language standards
specify that intrinsic procedures are selected ahead of an application procedure of the same sighatanmay

cause a different procedure to be used whamitching between translators.

For example, most languages provide a roatia calculate the square root of a number, usually narsgd()

If a translator also provided, as an extension, a cube root routine, say nelongll , that extension may
override an application defined procedure of the same signature. If the two diffetat() routines chose
different branch cuts when applied to complex arguments, the application could unpredictably go wrong.

If the language standard specifies that application defined procedures are selected ahead of intrinsic procedures
of the same gjnature, the use of the wrong predure may mask a linking error.

6.44.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Any language where translators may exdl the set of intrinsic procedures and where intrinsic
procedures are selected ahead of application defined (or external library defined) procedures of the same
signature.

6.44.5 Avoiding the vulnerability or mitigating its effec ts
Software developers caavoid the vulnerability or mitigate its ill effects in the following ways:

1 Use whatever language features are available to mark a procedure as language defined or application
defined.

© ISTIEC2012¢ All rights reserved 95

N

w

© 00 N O O

10

11

12

13
14
15

16

17
18
19
20

21
22

23

24
25
26
27
28
29

30

31

32
33

WG 23/N @10 Baseline Edition 2TR 24772

1 Be aware of the documentation for every translator in use and avoitjyziocedure signatures matching
those defined by the translatas extending the standard set.

6.44.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Qearly state whether translatorsanextend the set of intrinsic procedures or not

1 Qearly state what the precedence is for resolving collisions

91 Qearly provide ways to mark a procedure signature as being the intrinsic or an application provided
procedure

1 Require that a diagnostic is issugthen an application procedure matches the siture of an intrinsic
procedure.

6.45 Argument Passing to Library Functions [TRJ]

6.45.1 Description of application vulnerability

Libraries that supply objects or functions are in most cases not required to check the validity of parameters
passed to them. In those cases where parameter validation is required there might not beatelpgrameter
validation.

6.45.2 Cross reference

CWE:
114. Process Control
JSF AV Rules 16, 18, 19, 20, 21, 22, 23, 24, and 25
MISRA C 20020.2, 20.3, 20.4, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12

MISRA C++ 2008:-071, 170-5, 180-2, 180-3, 180-4, 182-1, 187-1 and 270-1
CERT C guiliilges: INTOC and STReC

6.45.3 Mechanism of failure

When calling a library, either the calling function or the library may make assumptions about paranketers.

example, it may be assumed by a librargtth parameter is nozero so division by that parameter is performed
without checking the valueSometimes some validation is performed by the calling function, but the library may
use the parameters in ways that were unanticipated by the calling fumetsulting in a potential vulnerability.

Even when libraries do validate parameters, their response to an invalid parameter is usually undefined and can

cause unanticipated results.
6.45.4 Applicable language characteristics

This vulnerability descriptivis intended to be applicable to languages with the following characteristics:

1 Languagesgroviding or usingjbraries that do not validate the parameters accepted by functions,
methods and objects.

96 © ISTIEC2012 ¢ All rights reserve

o O~ W N

\‘

10
11
12
13

14

15

16
17
18

19
20

21

22

23

24
25
26
27

28
29
30
31

Baseline Editiol2 TR 24772 WG 23/N @10

6.45.5 Avoiding the vulnerability or mitigating its effec ts
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Libraries should be defined to validate any values passed to the libefoye the value is used.
Develop wrappers around library functions that check the parameters before calling the function.
Demonstrate statically that the parameters are never invalid.

Use only libraries known to have been developed with consistent alidhted interface requirements.

=A =4 =8 =4

It is noted that several approachean be taken, some work best if used in conjunction with each other.
6.45.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Ensure thaglllibrary functiors defined operates intended over the specifiedange of input values and
reactin a defined manner to values that are outside the specified range.

9 Languages should define libraries that provide the capability to validate parameters during compilation,
during execution or by static analysis.

6.46 Inter -language Calling [DJS]

6.46.1 Description of application vulnerability

When an application is developed using more than one programming language, complications arise. The calling
conventiors, data layout, error handing and return conventions all differ between languages; if these are not
addressed correctly, stack overflow/underflow, data corruption, and memory corruption are possible.

In mult-language development environments it is alsfficlilt to reuse data structures and object code across
the languages.
6.46.2 Cross reference

[Nondg

6.46.3 Mechanism of failure

When calling a function that has been developed using a language different from the calling language, the call
convention andhe return convention used must be taken into account. If these conventions are not handled
correctly, there is a good chance the calling stack will be corrupted, see [OTR]. The call convention covers how
the language invokes the call, see [CJS], andthewparameters are handled.

Many languages restrict the length of identifiers, the type of characters that can be used as the first character,
and the case of the characters used. All of these need to be taken into account when invoking a routindrwritten
a language other than the calling language. Otherwise the identifiers might bind in a manner different than
intended.

© ISTIEC2012¢ All rights reserved 97

a b~ Ww NP

»

10
11

12

13

14
15

16
17

18

19
20

21
22

23

24

25

26
27

28
29
30

31
32

WG 23/N @10 Baseline Edition 2TR 24772

Character and aggregate data types require special treatimeatmultilanguage development environment. The
data layout of all languges that are to be used must be taken into consideration; this includes padding and
alignment. If these data types are not handled correctly, the data could be corrupted, the memory could be
corrupted, or both may become corrupt. This can happen byngrfiteading past either end of the data
structure, see [HCB]. For examplé&ascabTRINGdata type

VAR str: STRING(10);
corresponds to a C structure
struct {
int length;

char str [10];
2

andnot to the C structure

char str [10]

wherelength contains the actual length @TRING. The second C construct is implemented with a physical
length that is different from physical length of the Pasg8@RINGand assumes a null terminator.

Most numeric data typs have counterparts across languageut again the layout should be understood, and
only those types that match the languages should be used. For example, in some implementations of C++ a

signed char
would match a Fortran
integer(1)
and would match a Pascal
PACKED- 128..127
These correspadences can be implementatiethefined and should be verified.
6.46.4 Applicable language characteristics
The vulnerability is applicable to languages with the following characteristics:

1 All high level programming languages and low level programming laaguag susceptible to this
vulnerability when used in a multitnguage development environment.

6.46.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
1 Use the interlanguage methods and syntax specified by the applicable language standard(s). For

example, Fortran and Ada specify how to call C funstion
9 Understand the calling conventions of all languages used.

98 © ISTIEC2012 ¢ All rights reserve

O~NOOUTDAWN PR

10

11
12

13

14

15
16
17
18
19

20
21
22
23
24
25

26

27

28

29
30

31
32
33

Baseline Editiol2 TR 24772 WG 23/N @10

9 Foritems comprising the intdanguage inteface:
0 Understand the data layout of all data types used.
0 Understand the return conventions of all languages used.
0 Ensure that the language in which error check occurs is the one that handles the error.
0 Avoid assuming that the language makes a distindtietaveen upper case and lower case letters
in identifiers.
Avoid using a special character as the first character in identifiers.
0 Avoid using long identifier names.

o

6.46.6 Implications for standardization
In future standardization activities, the followiitgms should be considered:

9 Standards committees should consider developing standard provisions foiflanigunage calling with
languages most often used with their programming language.

6.47 Dynamically -linked Code and Self-modifying Code [NYY]

6.47.1 Description of application vulnerability

Code that is dynamically linkeday be dfferent from the code that was tested. This may be the result of
replacing a library with another of the same name or by altering an environment variable such as
LD_LIBRARY_PATHon UNIXplatforms so that a different directory is searched fioe library file. Executing
code that is different than thatvhich was tested may lead to unanticipated errors or intentional malicious
activity.

On some platforms, and in some languages, instructions can modify other instructions in the code space.
Higorically selfmodifying code was needed for software that was required to run on a platform with very limited
memory. Itis now primarily used (or misused) to hide functionality of software and make it more difficult to
reverse engineer or for special@pplications such as graphics where the algorithm is tuned at runtime to give
better performance. Selfhodifying code can be difficult to write correctly and even more difficult to test and
maintain correctly leading to unanticipated errors.

6.47.2 Crossreference
JSF AV Rule: 2
6.47 .3 Mechanism of failure

Through the alteration of a library file or environment variable, the code that is dynamically linked may be
different from the code which was tested resulting in different functionality.

On some platfoms, a pointetto-data can erroneously be given an address value that designates a location in the
instruction space. If subsequently a modification is made through that pointer, then an unanticipated behaviour
can result.

© ISTIEC2012¢ All rights reserved 99

N

~No ok~ w

10
11
12
13
14

15

16

17
18

19

20

21
22
23
24

25
26

27
28

29

30
31

WG 23/N @10 Baseline Edition 2TR 24772

6.47 .4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

9 Languages that allow a pointéw-data to be assigned an address value that designates a location in the
instruction space

1 Languages thallow execution otode that exists inlata space

1 Languages that permit the use of dynamically linked or shared libraries

1 Languagethat executeon an OS that permits program memory to be both writable and executable.

6.47.5 Avoiding the vulnerability o r mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Verify that the dynamically linked or shared code being used is the same as that which was tested.

1 Do not write seHmodifying codeexcept in extremely rare instances. Most software applications should
never have a requirement for satiodifying code.

1 Inthose extremely rare instances where its use is justifiedinsetfifying code should be very limited and
heavily documented.

6.47.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should consider providing a means so that a program can either automatically or manually
check that the digital signaturef a library matches the one in the compile/test environment.

6.48 Library Signature [NSQ

6.48.1 Description of application vulnerability

Programswritten in modern languages may use libraries written in other languages than the program
implementation language. If the library is large, the effort of adding signatures for all of the functions use by
hand may be tedious and errgrone. Portable craslanguage signatures will require detailed understanding of
both languages, which a programmer may lack.

Integrating two or more programming languages into a single executable relies upon knowing how to interface
the function calls, argument list and glalldata structures so the symbols match in the object code during linking.

Byte alignment can be a source of data corruption if memory boundaries between the programming languages
are different. Each language may also align structure data differently.

6.48.2 Cross reference

MISRA C 2004: 1.3
MISRA C++ 2008:012

100 © ISTIEC2012 ¢ All rights reserve

(0]

10

11

12

13

14

15

16
17
18

19

20

21
22
23

24

25

26
27
28
29

30
31

Baseline Editiol2 TR 24772 WG 23/N @10

6.48.3 Mechanism of failure

When the library and the application in which it is to be used are written in different languages, the specification
of signatures is complicated by intlmguage isues.

As used in this vulnerability description, the term library includes the interface to the operating system, which
may be specified only for the language used to code the operating system itself. In this case, any program writte
in any other languagfaces the intetanguage interoperability issue of creating a fdllpctional signature.

When the application language and the library language are different, then the ability to specify signatures
according to either standard may not exist, or be wéifficult. Thus, a translateby-translator solution may be
needed, which maximizes the probability of incorrect signatures (since the solution must be recreated for each
translator pair). Incorrect signatures may or may not be caught during the lipkesg.

6.48.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that do not specify how to describe signatures for subprograms written in othergaagua

6.48.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use tools to create the signatures.
1 Avoid using translator options or language featuresaference library subprograms without proper
signatures.

6.48.6 Implications for standardization

In future standardization activities, the following items should be considered:

91 Provide correct linkage even in the absence of correctly specified proceduasies. (Note that this
may be very difficult where the original source code is unavailable.)
91 Provide specified means to describe the signatures of subprograms.

6.49 Unanticipated Exceptions from Library Routines [HIW]

6.49.1 Description of application vulnerability

A library in this context is taken to mean a set of software routines produced outside tiv@lcof the main

application developer, usually by a third party, and where the application developer may not have access to the
source. In such circumstances the application developer has limited knowledge of the library functions, other thar
from their behavioural interface.

Whilst the use of libraries can present a number of vulnerabilities, the focus of this vulnerability is any undesirable
behaviour that a library routine may exhibit, in particular the generation of unexpected exceptions.

© ISTIEC2012¢ All rights reserved 101

a b~ WwN

(o]

10
11

12

13

14
15
16

17

18

19
20
21
22
23
24
25
26

27

28

29
30
31
32
33

WG 23/N @10 Baseline Edition 2TR 24772

6.49.2 Crossreference

JSFAV Rule208

MISRA Q004 3.6, 20.3

MISRA C+2008 153-1, 153-2, 1704
AdaQualityand Style Guide: 5.8 and 7.5

6.49.3 Mechanism of failure

In some languages, unhandled exceptions leaidijgementationdefinedbehaviour. This canriclude immediate
termination, without for example, releasing previously allocated resourtfes library routineraisesan
unanticipated exception, this undesirable behaviour may result.

It should be noted that the considerations[@YB, IgnoredError Statusand Unhandled Exceptionare also
relevant here.

6.49.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

|l

|l

7 A

Languages thatan link previously develope®liN} NB O2 RS 66 KSNB (K RSOSt 2L
access to the library source)
Languages that permit exceptions to be thrown but do not require handlers for them

6.49.5 Avoiding the vulnerability or mitigating its effects

Software developers carvaid the vulnerability or mitigate its ill effects in the following ways:

1

)l

lEf fAONI NBE OF ffa &Ksadtt R SE OONDhalgsiRagedshipattaSmtha WO I
construct), so that any unanticipated exceptiar@ be caught and handled appropriatelyhis wrapping

may be done for each library function call or for the entire behaviour of the prodi@nexample having

the exception handler in main for C+However, note that the la& NJ A angplRié solutio) &s static

objects are constructed before maimdntered and are destroyed after it has been exit€bnsequently,

MISRA CH#i6] bars class constructors and destructors from throwing exceptions (unless handled locally).
An alternative approach would be to use only library routines for which all possible exceptions are
specified.

6.49.6 Implications for standardization

In future standardization activities, the following items should be considered:

1

102

Languages that providexeeptions should provide a mechanism for catching all possible exceftions
examplel WA I AKX Klhe/bRHaBoddofdhe program when encountering an unhandled
exception should be fully defined.

Languages should provide a mechanism to deteemwihich exceptions might be thrown by a called
library routine.

© ISQIEC2012 ¢ All rights reserve

10

11

12
13
14
15
16

17

18
19

20
21

22

23

24

25

26

27

Baseline Editiol2 TR 24772 WG 23/N @10

6.50 Pre-processor Directives [NMP]

6.50.1 Description of application vulnerability

Preprocessor replacements happen before any source code syntax check, therefore there is no type @hecking
this is especially important in functidike macro parameters.

If great care is not taken in the writing of macros, the expanded macro can haweeapected meaning. In
many cases if explicit delimiters are not added around the macro text and around all macro arguments within the
macro text, unexpected expansion is the result.

Source code that relies heavily on complicated-precessor directivemay result in obscure and hard to
maintain code since the syntax they expect may be different from the expressions programmers regularly expect
in a given programming language.

6.50.2 Cross reference

Holzmanr8

JSFAV Rules: 26, 27, 28, 29, 30, 31, and 32

MISRA C 2004: 191).7, 19.8, and 19.9

MISRA C++ 2008:-D63, 160-4, and 160-5

CERT C guidelines: PREQPREQGZ, PRE1C, and PRE3T

6.50.3 Mechanism of failure

Readability and maintainability may be greatly decreased Hopoeessing directivieare used instead of language
features.

While static analysis can identify many problems early; heavy use of therpcessor can limit the effectiveness
of many static analysis tools, which typically work on thegma@cessed source code.

In many casewhere complicated macros are used, the program doesdaotvhat is intended. For example:

define a macro as follows,
#define CD(x, y) (x +y -1y

whose purpose is to divide. Then suppose it is used as follows
a=CD (b &c, sizeof (int));

which expands into
a = (b & ¢ + sizeof (int) - 1)/ sizeof (int);

which most times will not do what is intended. Defining the macro as
#define CD(x, y) ((x) + (y) - 1/

will provide the desired result.

© ISTIEC2012¢ All rights reserved 103

=

N

© 00 N O 01~ W

10

11

12
13

14

15

16
17
18
19

20

21

22
23
24

25
26
27

28

29

WG 23/N @10 Baseline Edition 2TR 24772

6.50.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

Languages that have a lexitavel preprocessor.

Languages that allow unintended groupings of arithmetic statements.
Languages that allow cascadimacros.

Languages that allow duplication of side effects.

Languages that allow macros that reference themselves.

Languages that allow nested macro calls.

Languages that allow complicated macros.

=A =4 =4 =4 -4 4 =4

6.50.5 Avoiding the vulnerability or mitigating its effect s
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Where it is possible to achieve the desired functionality without the use oppoeessor directives, this
should be done in preference to the use of fym@cessodirectives

6.50.6 Implications for standardization

In future standardization activities, the following items should be considered:

i Standardsshould reduce or eliminate dependence on lexdeakl preprocessors for essential
functionality (suchas conditional compilation).

9 Standards should consider providing capabilities to inline functions and procedure calls, to reduce the
need for preprocessor macros.

6.51 Suppression of Language-defined Run -time Checking [MXB]

6.51.1 Description of application vulnerability

Some languages include the provision for runtime checking to prevent vulnerahiditeise. Canonical
examples are bounds or length checks on array operations owalule checks upon dereferencing pointers or
references. In most cases, the reaction to a failed check is the raising of a larupiegel exception.

As runtime checkingequires execution time and as some project guidelines exclude the use of exceptions,
languages may define a way to optionally suppress such checking for regions of the code or for the entire
program. Analogously, compiler options may be used to achibieeffect.

6.51.2 Cross reference

[None]

104 © ISTIEC2012 ¢ All rights reserve

© o0 ~NO»

10

11

12
13
14
15
16
17
18

19

20

21

22

23
24

25
26
27

28
29
30
31
32

33
34

Baseline Editiol2 TR 24772 WG 23/N @10

6.51.3 Mechanism of Failure

Vulnerabilities that could have been prevented by the-tume checks are undetected, resulting in memory
corruption, propagation of incorrect values or unintended execution paths.

6.51.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

9 Languages that define runtime checks to prevent certain vulnerabilities and

1 Languages that allow the aboehecks to be suppressed,

9 Languages or compilers that suppress checking by default, or whose compilers or interpreters provide
options to omit the above checks

6.51.5 Avoiding the vulnerability
Software developers can avoid the vulnerability or mitigatdlieffects in the following ways:

1 Do not suppress checks at all or restrict the suppression of checks to regions of the code that have been
proved to be performanceritical.

If the default behaviour of the compiler or the language is to suppress chieksenable them.

Where checks are suppressed, verify that the suppressed checks could not have failed.

Clearly identify code sections where checks are suppressed.

Do not assume that checks in code verified to satisfy all checks could not fail neverithedésto

hardware faults.

= =4 =4 =9

6.51.6 Implications for standardization

[None]

6.52 Provision of Inherently Unsafe Operations [SKL]

6.52.1 Description of application vulnerability

Languages define semantic rules to be obeyeddnformingprograms. Compilers enforce these rulesd
diagnoseviolating programs.

A canonical example are the rules of type checking, intended amitbiey reasons to prevent semantically
incorrect assignments, such as characters to pointers, meter to feet, euro to dollar, real numbers to booleans, or
complex numbers to twalimensional coordinates.

Occasionally there arises a need to step outsidertiles of the type model to achieve needed functianhal One
suchsituation is the casting of memory as part of the implementation of a heap allocator to the type of object for
which the memory is allocatedA typesafe assignment is impossible for thisctionality. Thus, a capability for

dzy OKSO1 SR adeéel)S OlradAay3daé o0SGveSSYy FNDAGNI NBE (GeLlSa i
inherently unsafe operation, without which the tygsafe albcator cannot be programmed.

Another examp# is the provision of operations known to be inherently unsafe, such as the deallocation of heap
memory without prevention of dangling references.

© ISTIEC2012¢ All rights reserved 10E

10
11

12

13

14
15
16

17

18

19
20
21
22

23

24

25
26
27
28
29

30
31

WG 23/N @10 Baseline Edition 2TR 24772

A third example is any interfacing with another language, since the checks ensurirgpfgpess rarely extel
across language boundaries.

These inherently unsafe operations constitute a vulnerability, since they can (and will) be used by programmers in
situations where their use is neither necessary nor appropriate.

The vulnerability is eminently exploitaltle violate program security.
6.52.2 Cross reference

[None]
6.52.3 Mechanism of Failure

The use of inherently unsafe operations or the suppression of checkmgnventshe features that are
normally applied to ensure safe execution. Control flow, dataesland memory accesses can be corrupted as a
consequence. See the respective vulnerabilities resulting from such corruption.

6.52.4 Applicable lan guage characteristics
This vulnerability description is intended to be applicable to languageghétfollowing characteristics:

1 Languages that allow compitane checks for the prevention of vulnerabilities to be suppressed by
compiler or interpreter options or by language constructs, or
1 Languages that provide inherently unsafe operations

6.52.5 Avoiding th e vulnerability

Software developers can avoid the vulnerability or mitigate itfféicts in the following ways:

1 Restrict the suppression of compiliene checks to where the suppression is functionally essential.

1 Use inherently unsafe operations only grhthey are functionally essential.

1 Clearly identify program code that suppresses checks or uses unsafe operations. This permits the focusing
of review effort to examine whether the function could be performed in a safer manner.

6.53 Obscure Language Feauures [BRSY

6.53.1 Description of application vulnerability

Every programming language has features that are obscure, difficult to understand arltitfiuse correctly.

The problem is compounded if a software design must be reviewed by people who may not be language experts,
such as, hardware engineers, hurd@ators engineers, or safety officerEven if the design and code are initially
correct,maintainers of the software may not fully understand the intefihe consequences of the problem are

more severe if the software is to be used in trusted applications, such as safety or mission critical ones.

Misunderstood language features or misundei@ code sequences can lead to application vulnerabilities in
development or in maintenance.

106 © ISTIEC2012 ¢ All rights reserve

O OB WN

10
11
12
13

14

15

16

17

18
19
20
21
22
23
24
25
26
27
28
29

30
31
32

33

34

Baseline Editiol2 TR 24772 WG 23/N @10

6.53.2 Cross reference

JSF AV Rules: 84, 86, 88, and 97

MISRA
MISRA
CERT

C 2004: 3.2,10.2,13.1, 12(6620.12, and 12.10
C++2008:21, 2-3-1, and 121-1
guiddéines: FIO0ZL, MSCO&, MSC3E, and MSC3(.

ISO/IEC TR 15942:2000: 5.4.2, 5.6.2 and 5.9.3

6.53.3 Mechanism of failure

The use of obscure language features can lead to an application vulnerability in several ways:

1

The original programmer may misderstand the correct usage of the feature and could utilize it
incorrectly in the design or code it incorrectly.

Reviewers of the design and code may misunderstand the intent or the usage and overlook problems.
Maintainers of the code cannot fully undeasid the intent or the usage and could introduce problems
during maintenance.

6.53.4 Applicable language characteristics

This vu

Inerability description is intended to be applicable to any language.

6.53.5 Avoiding the vulnerability or mitigating its effect s

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

)l

1

Individual programmers should avoid the use of language features that are obscure or difficult to use,
especially in combination with other difficult lanage features.Organizations should adopt coding
standards that discourage use of such features or show how to use them correctly.

Organizations developing software with critically important requirements should adopt a mechanism to
monitor which languageefatures are correlated with failures during the development process and during
deployment.

Organizations should adopt or develop stereotypical idioms for the use of difficult language features,
codify them in organizational standards, and enforce thenretigew processes.

Avoid the use of complicated features of a language.

Avoid the use of rarely used constructs that could be difficult for elevel maintenance personnel to
understand.

Static analysis can be used to find incorrect usage of some lanfpetgees.

It should be noted that consistency in coding is desirable for each of review and mainteddrezefore, the

desirab
proven.

ility of the particular alternatives chosen for inclusion in a coding standard does not need to be empirically

6.53.6 Implications for standardization

In future standardization activities, the following items should be considered:

© IS0l

IEC2012 ¢ All rights reserved 107

10
11
12
13

14

15
16
17
18
19

20
21
22

23
24
25
26

27
28
29

30
31
32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

1 Language designers should consider removing or deprecating obscure, difficult to understand, or difficult
to use features.
1 Language designersahid provide language directives that optionally disable obscure language features.

6.54 Unspecified Behaviour [BQF]

6.54.1 Description of application vulner ability

The external behaviour of a program whose source code contains one or more instances of constructs having
unspecified behaviour may not be fully predictable when the source code is (re)compiled or (re)linked.

6.54.2 Cross reference

JSF AV Rules:-2%

MISRA C 2004:3, 1.5,3.13.3,34,17.3,1.2,5.1,18.2,19.2, and 19.14
MISRA C++ 2008361, 52-6, 7-2-1, and 163-1

CERT C guiliiees: MSC1&

See Undefined Behaviour [EWF] and Implementatibefined Behaviour [FAB]

6.54.3 Mechanism of failur e

Language specifications do not always uniquely define the behaviour of a construct. When an instance of a
construct that is not uniquely defined is encountered (this might be at any of compile, link, or run time)
implementations are permitted to chooseoim the set of behaviours allowed by the language specificatidre
term 'unspecified behaviour' is sometimes applied to such behaviours, (language specific guidelines need to
analyze and document the terms used by their respective language).

A developemay use a construct in a way that depends on a subset of the possible behaviours occthigng.
behaviour of a program containing such a usage is dependent on the translator used to build it always selecting
the 'expected’ behaviour.

Many language consicts may have unspecified behaviour and unconditionally recommending against any use of
these constructs may be impracticdtor instance, in many languages the order of evaluation of the operands
appearing on the leftand righthand side of an assignmiis unspecified, but in most cases the set of possible
behaviours always produce the same result.

The appearance of unspecified behaviour in a language specificaticoignitionby the language designers that
in some cases flexibility is needed by aa@fte developers and provides a worthwhile benefit for language
translators; this usage is not a defect in the language.

The important characteristic is not the internal behaviour exhibited by a construct (such as the sequence of
machine code generated byt@nslator) but its external behaviour (that is, the one visible to a user of a

program). If the set of possible unspecified behaviours permitted for a specific use of a construct all produce the
same external effect when the program containing themxsaaited, then rebuilding the program cannot result in

a change of behaviour for that specific usage of the construct.

108 © ISTIEC2012 ¢ All rights reserve

10

11

12

13
14
15
16
17
18

19

20

21
22
23

24

25

26
27

28

29
30
31
32

Baseline Editiol2 TR 24772 WG 23/N @10

For instance, while the following assignment statement contains unspecified behaviour in many lanthetges
is, it is possible to evalue either theA or B operand first, followed by the other operand)

A =B;

in most cases the order in whighand B are evaluated does not affect the external behaviour of a program
containing this statement.

6.54.4 Applicable language characteristics
Thisvulnerability is intended to be applicable to languages with the following characteristics:

1 Languages whose specification allows a finite set of more than one behaviour for how a translator
handles some construct, where two or more of the behaviours eanlt in differences in external
program behaviour.

6.54.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use language constructs that have specitiettaviour.

1 Ensure that a specific use of a construct having unspecified behaviour produces a result that is the same

for all of the possible behaviours permitted by the language specification.

1 When developing coding guidelines for a specific languagemditructs that have unspecified behaviour
should be documented and for each construct the situations where the set of possible behaviours can
vary should be enumerated.

6.54.6 Implications for standardization

In future standardization activities, the folWing items should be considered:

9 Languages should minimize the amount of unspecified behaviours, minimize the number of possible
behaviours for any given "unspecified" choice, and document what might be the difference in external
effect associated with &ferent choices.

6.55 Undefined Behaviour [EWF]

6.55.1 Description of application vulnerability

The external behaviour of a program containing an instance of st having undefined behaviour, as defined
by the language specification, is not predictable.

6.55.2 Cross reference

JSF AV Rules:-2%

MISRA C 2004:3, 1.5, 3.13.3, 3.4,17.3,1.2,5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008:13-1, 52-2, 162-4,and 162-5

CERT C guiliiees: MSC1&

© ISTIEC2012¢ All rights reserved 10¢

o 01~ W

\l

10

11

12
13
14
15

16

17

18
19
20
21
22
23
24
25
26

27

28

29
30
31
32
33

WG 23/N @10 Baseline Edition 2TR 24772

See Unspecified Bhaviour [BQFhnd Implementatiordefined Bhaviour [FAB]
6.55.3 Mechanism of failure

Language specifications may categorizelibhaviourof a language construct as undefined rather than as a
semauriic violation (that is, an erroneous use of the language) because of the potentially high implementation cost
of detecting and diagnosing all occurrences of it. In this case no specific behaviour is required and the translator
or runtime system is at libgy to do anything it pleases (which may include issuing a diagnostic).

Thebehaviourof a program built from successfully translated source code containing a construct having
undefinedbehaviouris not predictable. For example, in some languages theev@fla variable is undefined
before it is initialized.

6.55.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languages that do not fully define the extent to which the aga particular construct is a violation of
the language specification.

1 Languages that do not fully define the behaviour of constructs during compile, link and program
execution.

6.55.5 Avoiding the vulnerability or mitigating its effects
Software develpers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Ensuring that undefined language constructs are not used.

1 Ensuring that a use of a construct having undefined behaviour does not operate within the domain in
which the belaviour is undefinedWhen it is not possible to completely verify the domain of operation
during translation a runtime check may need to be performed.

1 When developing coding guidelines for a specific language all constructs that have untefraetbur
should be documented. The items on this list might be classified by the extent to whitehia@iouris
likely to have some critical impact on the exterbahaviourof a program (the criticality may vary
between different implementations, for example, etiher conversion between object and function
pointers has well definetiehaviou).

6.55.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language designers should minimize the amount of findd behaviourto the extent possible and
practical.

1 Language designers should enumerate all the cases of undefined behaviour.

9 Language designers should provide mechanisms that permit the disabling or diagnosing of constructs that
may produce undefined Weaviour.

110 © ISTIEC2012 ¢ All rights reserve

10
11
12
13
14

15

16
17
18
19

20
21
22

23
24
25
26
27

28
29
30
31

32
33
34

Baseline Editiol2 TR 24772 WG 23/N @10

6.56 Implementation -defined Behaviour [FAB]

6.56.1 Description of application vulnerability

Some constructs in programming larages are not fully defined (see Unspecifisehaviou[BQF]) and thus
leave compiler implementations to decide how the construct will operate. bEmaviourof aprogram,whose
source code contains one or more instances of constructs having implementsforedbehaviour can change
when the source code is recompiled or relinked.

6.56.2 Cross reference

JSF AV Rules:-2%

MISRA C 2004:3,1.5,3.13.3,3.4,17.3,1.2,5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008:259, 53-3, 7-3-2, and 95-1

CERT C gulines: MSC1&

ISO/IEC TR 15942:2000: 5.9

AdaQualityand Style Guide: 7.1.5 and 7.1.6

See UnspecifiedBehaviou[BQFJand UndefinedBehavioufEWF].

6.56.3 Mechanism of failure

Language specifications do not always uniquely defindo#teviourof a corstruct. When an instance of a
construct that is not uniquely defined is encountered (this might be at any of translatio#iniek or program
execution) implementations are permitted to choose from a sdbetfavious. The only difference from
unspecifed behaviouris that implementations are required to document how they behave.

A developer may use a construct in a way that depends on a particular implemenrdatiored behaviour
occurring. Thebehaviourof a program containing such a usage is depeda the translator used to build it
always selecting the 'expecteokhaviour

Some implementations provide a mechanism for changing an implementation's implemenrdafimed

behaviour(for example, use giragmas in source code). Usd such a change mechanism creates the potential

for additional human error in that a developer may be unaware that a changel@viourwas requestectarlier
in the sourcecode and may write code that depends the implementationdefinedbehaviourthat occurred
prior to that explicit change diehaviour.

Many language constructs may have implementatitafinedbehaviourand unconditionally recommending
against any use of these constructs may be completely impractacalinstance, in many languages thember
of significant characters in an identifier is implementatidefined. Developers need to choose a minimum
number of characters and require that only translators supporting at least that nurhbef,characters be used.

The appearance of implemerttan-definedbehaviourin a language specification is recognition by the language

designers that in some cases implementation flexibility provides a worthwhile benefit for language translators;

this usage is not a defect in the language.

© ISTIEC2012¢ All rights reserved 111

N

D 01~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

27
28
29
30

31

32

33
34
35

WG 23/N @10 Baseline Edition 2TR 24772

6.56.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languages whose specification allows some variation in how a translator handles some construct, where
reliance on one form of this viation can result in differences in external prograehaviour

1 Language implementations may not be required to provide a mechanism for controlling implementation
definedbehaviout

6.56.5 Avoiding the vulnerability or mitigating its effects
Software devipers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Document the set of implementatiedefined features an application depends upon, so that upon a
change of translator, development tools, or target configuration it caefsured that those
dependencies are still met

1 Ensure that a specific use of a construct having implementatefimnedbehaviourproduces an external
behaviourthat is the same for all of the possildehavious permitted by the language specification.

1 Only use a language implementation whose implementaii@iinedbehavious are within a known
subset of implementatiordefinedbehavious. The known subset should be chosen so that the 'same
externalbehaviout condition described above is met.

1 Create higly visible documentation (perhaps at the start of a source file) that the default
implementationdefinedbehaviouris changed within the current file.

1 When developing coding guidelines for a specific language all constructs that have implementation
definedbehaviourshall be documented and for each construct, the situations where the set of possible
behavious can vary shall be enumerated.

1 When applying this guideline on a project the functionality provided by and for changing its
implementationdefinedbehaviourshall be documented.

9 Verify code behaviour using at least two different compilers with two different technologies.

6.56.6 Implications for standardization

In future standardization activities, the following items should be considered:

91 Portability gudelines for a specific language should provide a list of common implemenitifimed
behavious.

1 Language specifiers should enumerate all the cases of implemenvdiimed behaviour

1 Language designers should provide language directives that optialiséible obscure language features.

6.57 Deprecated Language Features [MEM]
6.57.1 Description of application vulnerability

All code should atform to the current standard for the respective language. In reality though, a language
standard may change during the creation of a software system or suitable compilers and development
environments may not be available for the new standard for somegdenf time after the standard is published.

112 © ISTIEC2012 ¢ All rights reserve

O OB~ WDN P

10
11

12

13
14
15
16
17
18
19
20
21
22
23

24

25

26
27

28

29

30
31
32
33
34
35

Baseline Editiol2 TR 24772 WG 23/N @10

Tosmooth the process of evolution, features that are no longer needed or which serve as the root cause of or
contributing factor for safety or security problems are often deprecated to temporarily allowd¢batinued use

but to indicate that those features may be removed in the future. The deprecation of a feature is a strong
indication that it should not be used. Other features, although not formally deprecated, are rarely used and there
exist other more ommon ways of expressing the same function. Use of these rarely used features can lead to
problems when others are assigned the task of debugging or modifying the code containing those features.

6.57.2 Cross reference

JSF AV Rules: 8 and 11

MISRA C 2004:1, 4.2, and 20.10

MISRA C++ 2008:0-1, 23-1, 25-1, 27-1, 52-4, and 180-2
AdaQualityand Style Guide: 7.1.1

6.57.3 Mechanism of failure

Most languages evolve over time. Sometimes new features are added making other features extraneous.
Languagesay have features that are frequently the basis for security or safety problems. The deprecation of
these features indicates that there is a better way of accomplishing the desired functionality. However, there is
always a time lag between the acknowtgament that a particular feature is the source of safety or security
problems, the decision to remove or replace the feature and the generation of warnings or error messages by
O2YLIAESNAR GKIG GKS TSI 0dz2NB aK2 dzZ Rafenanyyears urdeSdom itis DA @
possible and even likely that a language standard will change causing some of the features used to be suddenly
deprecated. Modifying the software can be costly and time consuming to remove the deprecated features.
Howeve, if the schedule and resources permit, this would be prudent as future vulnerabilities may result from
leaving the deprecated features in the code. Ultimately the deprecated features will likely need to be removed
when the features are removed

6.57.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 All languageshat have standards, though some only have defacto standards.
1 All languages that evolve over tim@d as such could potentially have deprecated features at some point.

6.57.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

91 Adhere to the latest publised standard for which a suitable complier and development environment is
available.

1 Avoid the use of deprecated features of a language.

9 Stay abreast of language discussions in language user groups and standards groups on the Internet.
Discussions and mareg notes will give an indication of problem prone features that should not be used
or should beused with caution.

© ISTIEC2012¢ All rights reserved 113

=

N

© 00 N O U1 bW

10

11

12
13
14
15
16
17
18

19

20
21

22

23

24
25
26

27
28
29

30

31
32

WG 23/N @10 Baseline Edition 2TR 24772

6.57.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Obscure language &ures for which there are commonly used alternatives should be considered for
removal from the language standard.

1 Obscure language features that have routinely been found to be the root cause of safety or security
vulnerabilities, or that are routinely stallowed in software guidance documents should be considered for
removal from the language standard.

1 Language designers should provide language mechanisms that optionally disable deprecated language
features.

7. Application Vulnerabilities

7.1 General

This clause provides descriptions of selected application vulnerabilities which have been found and exploited in a
number of applications and which have well known mitigation techniques, and which result from design decisions
made by coders in the absencesufitable language library routines or other mechanistasr these
vulnerabilities, each description provides:

1 asummary of the vulnerability,

1 typical mechanisms of failure, and

1 techniques that programmers can use to avoid the vulnerability

7.2 Terminol ogy

These vulnerabilities are applicatioelated rather than languageelated. They are written in a language
independent manner, and there are no corresponding sections in the annexes.

7.3 Unspecified Functionality [BVQ)]

7.3.1 Description of application vulnerability

Unspecified functionalitis code that may be executed, but whose behaviour does not contriloutieet
requirements of the applicatior? KAt S GKA& YI& 06S y2 Y2NB (GKFy |y | Ydz
in a spreadsheetit does raise questions about the level of control of the development process.

In a securitycritical environment p NI A Odzf F NI @8 2 G KS RS@St 2LISNIR2Z NRY R LILIK
illegitimate access to the system on which it is eventually executed, irrespective of whether the application has
obvious security requirements.

7.3.2 Cross reference

JSF ARule: 127
MISRA C 2004: 2.2,2.3, 2.4, and 14.1

114 © ISTIEC2012 ¢ All rights reserve

~N o o1k~ Ww

(0]

10

11
12

13

14

15
16
17
18
19
20
21
22

23

24

25
26
27
28
29
30
31

32

33
34
35

Baseline Editiol2 TR 24772 WG 23/N @10

XYQ: Dead and Deactivated code.
7.3.3 Mechanism of failure

Unspecified functionalitjs not a software vulnerability per se, but more a development issue. In some cases,
unspecified functionality may be added by a developer without the knowledge of the development organization.
In other cases, typically Easter Eggs, the functionality is unspecified as far as the user is concerned (nobody buy
spreadsheet expecting to firidincludes a flight simulator), but is specified by the development organization. In
STFSOUH (GKSe 2yfeée NBOGSIE I &adzoaSd 2F GKS LINPINFYQa

In the first case, one would expect a well managed development environment to discover thiemaldit
functionality during validation and verification. In the second case, the user is relying on the supplier not to
release harmful code.

Ly STFSOGZ | LINBPBINIYQa NBIdZANBYSyda INB WiKS LINRBIN
TKS WEYR R2 y2iKAy3 StasSqQ OfldzasS A& 2Fi4Sy yz2i SELIX

7.3.4 Avoiding the vulnerability or mitigating its effects

End usergan avoid the vulnerability or mitigate its ill effects in the following ways:

1 Prograns and development tools that are to be used in critical applications should come from a
developer who uses a recognized and audited development process for the development of those
programs and toold-or example: ISO 9001 or CMMI®.

1 The development proceshould generate documentation showing traceability from source code to
NBIljdZANBYSyi(ias Ay STFFSOG | yagSNR Wherdundpecifiea (KA &
functionality is there for a legitimate reason (such as diagnostics required foragmrahaintenance or
enhancement), the documentation should also record thiss not unreasonable for customers of
bespoke critical code to ask to see such traceability as part of their acceptance of the application.

7.4 Distinguished Values in Data Typ es [KLK]

7.4.1 Description of application vulnerability

Sometimes, in a type representation, certain values are distinguishedtdseing members of the type, but

rather as providing auxiliary informatiofexamples include special characters used as string terminators,
distinguished values used to indicate out of type entrieS@i(Structued Query Languagepntabase fields, and
sentinels used to indicate the bounds of queues or other data structuMsen the usage pattern of code
containing distinguished values is changed, it may happen that the distinguished value happens to coih@ade wit
legitimate intype value. In such a case, the value is no longer distinguishable frorrtygpeinalue and the

software will no longer produce the intended results.

7.4.2 Cross reference

CWE:
20. Improper input validation
137. Representation errors

© ISTIEC2012¢ All rights reserved 11E

10

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26

27
28
29

30

31

32
33
34
35

WG 23/N @10 Baseline Edition 2TR 24772

JSFAV Rule151
7.4.3 Mechanism of failure

| GRAAGAYIdZAEAKSR @FtdzS¢ 2NJ I bYF3IAO ydzYoSNh Ay- (GKS
of-type information. Some examples include the following:

1 The use of a special cod®jch asi n ncirkicaie the termination of a coded character string.
f The use of a special valumich ast pppX pé > a GKS AYRAOFGAZ2Y GKIFG (K
is invalid.

If the use of the software is later generalized, the ospecial value can beote indistinguishable from valid
data. Note that the problem may occur simply if the pattern of usage of the software is changed from that
FYGAOALI GSR o0& (GKS az2Fidgl NEQa RSaA3IySNERD® LG YIe I|fa

An examp of a change in the pattern of usage is this: An organization logs visitors to its buildings by recording
their names and national identity numbers or social security numbers in a dataldsmurse, some visitors

f SAAGAYF ISt & R2YREAKI WSEORNI R2FQIENA ¥R oy deYo SNE a2 (KS
0KS O2 Y LIzWwSNISKLBlI2eydéa Ga |G 2yS o0dzAif RAy3 KI @S55F R2 LJG SF
ppppé G2 RS&AITY!Il (SReCeftibrisk AlBndthe? Huildifgrvelis@ddhs Satebcode to

designate foreign nationalsVhen the databases are merged, the children are reclassified as foreign nationals or
viceversa depending on which set of receptionists are using the newly merged database.

An example of an unanticipped change due to reuse is this: Suppose a software component analyzes radar data,
recording data every degree of azimuth from 0 to 3BP%ckets of data are sent to other components for
processing, updating displays, recording, and so%ince all degre values are nonegative, a distinguished

value of-1 is used as a signal to stop processing, compute summary data, close files, andviemgrf the
components are to be reused in a new system with a new radar analysis compdi@mever the new

component represents direction by numbers in the ran@80 degrees to 179 degree®¥hen an azimuth value

of -1 is provided, the downstream components will interpret that as the indication to stop procedéig.

magic value is changed to, sa§99, thesoftware is still at risk of failing when future enhancements (say,

counting accumulated degrees on complete revolutions) bi®99 into the range of valid data.

Distinguished values should be avoided. Instead, the software should be designed to inst dhsiables to
encode the desired oudf-type information. For example, the length of a character string might be encoded in a
dope vector and validity of data entries might be encoded in distinct Boolean values.

7.4.4 Avoiding the vulnerability or mi tigating its effects
End usergan avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use auxiliary variables (perhaps enclosed in variant records) to encods-tyyte information.

1 Use enumeration types to convey category inforinat Do not rely upon large ranges of integers, with
distinguished values having special meanings.

I Use named constants to make it easier to change distinguished values.

116 © ISTIEC2012 ¢ All rights reserve

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24

25
26
27

28

29

30
31
32

Baseline Editiol2 TR 24772 WG 23/N @10

7.5 Adherence to Least Privilege [XYN]

7.5.1 Description of application vulnerability
Failure to adhere to the principle of least privilege amplifies the risk posed by other vulnerabilities.
7.5.2 Cross reference

CWE:
250. Degin Principle Violation: Failure to Use Least Privilege
CERT C guililges: POSGZ

7.5.3 Mechanism of failure

This vulnerability type refers to cases in which an application grants greater access rights than necessary.
Depending on the level of access gehtthis may allow a user to access confidential informatieor example,
programs that run with root privileges have caused innumerali#Xsecurity disasters. It is imperative that you
carefully review privileged programs for all kindsse€urity problems, but it is equally important that privileged
programs drop back to an unprivileged state as quickly as possilieit the amount of damage that an
overlooked vulnerability might be able to cause. Privilege management functions canebehsome lesthan-
obvious ways, and they have different quirks on different platforiisese inconsistencies are particularly
pronounced if you are transitioning from one nooot user to another.Signal handlers and spawned processes
run at the priviege of the owning process, so if a process is running as root when a signal fires q@racass is
executed, the signal handler or splbocess will operate with root privilege#in attacker may be able to leverage
these elevated privileges to do finér damage.To grant the minimum access level necessary, first identify the
different permissions that an application or user of that application will need to perform their actions, such as file
read and write permissions, network socket permissions,smfbrth. Then explicitly allow those actions while
denying all else.

7.5.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Very carefully manage theting, management and handling of privileges. Explicitly manage trust zones
in the software.
1 Follow the principle of least privilege when assigning access rights to entities in a software system.

7.6 Privilege Sandbox Issues [XY(
7.6.1 Description of application vulnerability

A variety of vulnerabilities occur with improper handling, assignment, or management of privilHyese are
especially pesent in sandbox environments, although it could be argued that any privilege problem occurs within
the context of some sort of sandbox.

© ISTIEC2012¢ All rights reserved 117

© 00 NO Ok WDN

el el el =
W N Rk O

14

15
16
17
18
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

38

WG 23/N @10 Baseline Edition 2TR 24772

7.6.2 Cross reference

CWE:

266. Incorrect Privilege Assignment

267. Privilege Defined With Unsafe Actions

268. Privilge Chaining

269. Privilege Management Error

270. Privilege Context Switching Error

272. Least Privilege Violation

273. Failure to Check Whether Privileges were Dropped Successfully

274. Failure to Handle Insufficient Privileges

276. Insecure Default Perrsisns

732 Incorrect Permission Assignment for Critical Resource
CERT C guililees: POS3€

7.6.3 Mechanism of failure

The failure to drop system privileges when it is reasonable to do so iswegi@icationvulnerability by itself. It
does, however, see to significantly increase the severity of other vulnerabiliti@scording to the principle of
least privilege, access should be allowed only when it is absolutely necessary to the function of a given system,
and only for the minimal necessary amoulffttione. Any further allowance of privilege widens the window of

time during which a successful exploitation of the system will provide an attacker with that same privilege.

Many situations could lead to a mechanism of failure:

T
f

1

A product could incorrectlgissign a privilege to a particular entity.

A particular privilege, role, capability, or right could be used to perform unsafe actions that were not
intended, even when it is assigned to the correct entiMote that there are two separate stdategories
here: privilege incorrectly allows entities to perform certain actions; and the object is incorrectly
accessible to entities with a given privilege.)

Two distinct privileges, roles, capabilities, or rights could be combined in a way that allows ancentity t
perform unsafe actions that would not be allowed without that combination.

The software may not properly manage privileges while it is switching between different contexts that
cross privilege boundaries.

A product may not properly track, modify, recoat,reset privileges.

In some contexts, a system executing with elevated permissions will hand off a processifiter

objectto another process/userlf the privileges of an entity are not reduced, then elevated privileges are
spread throughout a sysm and possibly to an attacker.

The software may not properly handle the situation in which it has insufficient privileges to perform an
operation.

A program, upon installation, may set insecure permissions for an object.

7.6.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

118

© ISQIEC2012 ¢ All rights reserve

© 00 NO OB WDN P

=
o

=
=

12

13
14

15

16
17
18
19

20

21

22
23
24
25

26
27

28
29
30
31

32

33

1

Baseline Editiol2 TR 24772 WG 23/N @10

The principle of least privilege when assigning access rights to entities in a software system should be
followed. The setting, maagement and handling of privileges should be managed very carefipign
changing security privileges, one should ensure that the change was successful.

Consider following the principle of separation of privilegRequire multiple conditions to be meefore
permitting access to a system resource.

Trust zones in the software should be explicitly manadédt all possible, limit the allowance of system
privilege to small, simple sections of code that may be called atomically.

As soon as possible aftacquiring elevated privilege to call a privileged function suathasot() , the
program should drop root privilege and return to the privilege level of the invoking user.

In newer Windows implementations, make sure that the gsxtoken has the SelmpersatePrivilege

7.7 Executing or Loading Untrusted Code XYY

7.7.1 Description of application vulnerability

Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause an

application to execute malicious commands (and payloads) on behalf of an attacker

7.7.2 Cross reference

CWE:

114. Process Control
306. Missing Authentication for Critical Function
CERT C guiliies: PREOZ, ENVOZ, and ENVGG

7.7.3 Mechanism of failure

Process control vulnerabilities take two forms:

1

An attacker can change the command that the program executes so that the ateqgiaitly controls

what the command is.

An attacker can change the environment in which the command executes so that the attacker implicitly
controls what the command means.

Considering only the first scenario, the possibility that an attacker may bdabtmtrol the command that is
executed, process control vulnerabilities occur when:

f
il
)l

Data enters the application frora sourcethat is not trusted

The data is used as or as part of a string representing a command that is executed by the application.
By ecuting the command, the application gives an attacker a privilege or capability that the attacker
would not otherwise have.

7.7.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its #éa§ in the following ways:

© ISTIEC2012¢ All rights reserved 11¢

© 00 NO Ol WDN P

=
o

11

12
13

14

15

16
17

18

19
20
21

22

23
24
25
26
27

28

29

30

31
32
33

WG 23/N @10 Baseline Edition 2TR 24772

7 Libraries that are loaded should be well understood and come from a trusted source with a digital
signature. The application can execute code containedativelibraries, which often contain calls that
are susceptible to othesecurity problems, such as buffeverflows or command injection.

¢ All native libraries should be validated

1 Determine if the application requires the use of the native librargalt bevery difficult to determine
what these libraries actually do, anlde potential for malicious code is high.

1 To help prevent buffer overflow attacks, validate all input to ratralls for content and length.

{1 If the native library does not come from a trusted source, review the source code of the lidizey.
library shoud be built from the reviewed source before using it.

7.7.5 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language independent ARts code signing and data signisljould be defined, alleing each
Programming Language to define a binding.

7.8 Memory Locking [XZX]

7.8.1 Description of application vulnerability

Sensitive data stored in memory that was tmtked or that has been improperly locked may be written to swap
files on disk by the virtual memory manager.

7.8.2 Cross reference

CWE:
591. Sensitive Data Storage in Improperly Locked Memory
CERT C guililes: MEMO&C

7.8.3 Mechanism of failure

Sensiive data that is not kept cryptographically secure may become visible to an attacker by any of several
mechanisms.Some operating systems may write memory to swap or page files that may be visible to an attacker.
Some operating systems may provide medbars to examine the physical memory of the system or the virtual
memory of another applicationApplication debuggers may be able to stop the target application and examine or
alter memory.

7.8.4 Avoiding the vulnerability or mitigating its effects
In alnost all cases, these attacks require elevated or appropriate privilege.
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Remove debugging tools from production systems.
1 Log and audit all privileged operatis.
1 Identify data that needs to be protected and use appropriate cryptographic and other data obfuscation

120 © ISTIEC2012 ¢ All rights reserve

10
11

12

13

14
15
16
17

18

19
20

21

22
23
24

25
26
27
28
29

30
31
32
33

Baseline Editiol2 TR 24772 WG 23/N @10

technigues to avoid keeping plaintext versions of this data in memory or on disk.
9 If the operating systenallows, clear the swap file on shutdown.

Note: Several implementations of the PO&Kck() and the Microsoft Window¥irtualLock()
functions will prevent the named memory region from being written to a swap or pagefoeever, such
usage is not portable.

Systems that provide a "hibernate" facility (such as laptops) will write all of physical memory to a file that may be
visible to an attacker on resume.

7.8.5 Implications for standardization

In future standardization activities, tHellowing items should be considered:

1 Language independent APIs foemory lockingshould be defined, allowing each Programming Language
to define a binding.

7.9 Resource Exhaustion [XZP]

7.9.1 Description of application vulnerability

The application is susceptible to generating and/or accepting an excessive number of requests that could
potentially exhaust limited resources, such as memory, file system stodadgghase connection pool entries, or
CPU.This could ultimately lead to a denial of service that could prevent any other applications from accessing
these resources.

7.9.2 Cross reference

CWE
400. Resource Exhaustion

7.9.3 Mechanism of failure

There a@e two primary failures associated with resource exhaustibhe most common result of resource
exhaustion is denial of servicén some cases an attacker or a defect may cause a system to fail in an unsafe or
insecure fashioy causing an application to exhaust the available resources.

Resource exhaustion issues are generally understood but are far more difficult to préaking advantage of
various entry points, an attacker could craft a wide variety of requests thatdw@ause the site to consume
resources.Database queries that take a long time to process are dgua®Denial of Service) targeté&\n
attacker would only have to write a few lines of Perl code to generate enough trafficcied the site's ability to
keep up. This would effectively prevent authorized users from using the site at all.

Resources can be exhausted simply by ensuring that the target machine must do much more work and consume
more resources$o service a requeghan the attacker must do to initiate a requed®revention of these attacks
requires either that the target system either recognizes the attack and denies that user further access for a given
amount of time or uniformly throttles all requests make itmore difficult to consume resources more quickly

© ISTIEC2012¢ All rights reserved 121

a b~ wN P

© 0 N O

10
11
12
13

14

15

16
17
18
19
20
21
22
23
24

25

26

27
28
29
30

31

32
33

34

35

WG 23/N @10 Baseline Edition 2TR 24772

than they can again be freed.he first of these solutions is an issue in itself though, since it may allow attackers
to prevent the use of the system by a particular valid uskthe attacker impersonas the valid user, he may be
able to prevent the user from accessing the server in quesfidre second solution is simply difficult to

effectively institute and even when properly done, it does not provide a full solutissimply makes the attack
require more resources on the part of the attacker.

The final concern that must be discussed about issues of resource exhaustion is that of systems which "fail open."
This means that in the event of resource consumption, the system fails in such a wayetistate of the system

T and possibly the security functionality of the systenmare compromised.A prime example of this can be

found in old switches that were vulnerable to "matattacks (so named for a tool developed by Dug3ong
Theseattacks flooded a switch with random(IRternet Protocolland MAQMedia Access Contraddress

combinations, therefore exhausting the switch's cache, which held the information of which port corresponded to
which MAC addressedOnce this cache was exhausted, the switch would fail in an insecure way and would begin
to act simply as a hub, broadcasting all traffic on all ports and allowing for basic sniffing attacks.

7.9.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

T Implement throttling mechanisms into the system architectufiéde best protection is to limit the
amount of resources that an application can catsbe expended.A strong authentication and access
control model will help prevent such attacks from occurring in the first pld¢e authentication
application should be protected against denial of service attacks as much as poksititeng the
database access, perhaps by caching result sets, can help minimize the resources exjeniether
limit the potential for a denial of service attack, consider tracking the rate of requests received from users
and blocking requests that exceed a defimate threshold.

1 Ensure that applications have specific limits of scale placed on them, and ensure that all failures in
resource allocation cause ttaoplication to fail safely.

7.10 Unrestricted File Upload [CBF

7.10.1 Description of application vulnerability

A first step often used to attack is to get an executable on the system to be attacked. Then the attack only needs
to execute this code. Marimes this first step is accomplished by unrestricted file upload. In many of these
attacks, the malicious code can obtain the same privilege of access as the application, or even administrator
privilege.

7.10.2 Cross reference

CWE:
434.Unrestricted Uplad of File with Dangerous Type

7.10.3 Mechanism of failure

There are several failures associated with an uploaded file:

122 © ISTIEC2012 ¢ All rights reserve

N o o WDN

(o]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28

29

30

31
32

=A =2 =4 =4 =4 =4

1

Baseline Editiol2 TR 24772 WG 23/N @10

Executing arbitrary code.

Phishing page added to a website.

Defacing a website.

Creating a vulnerability for other attacks.

Browsing thdfile system.

Creating a denial of service.

Uploading a malicious executable to a server, which could be executed with administrator privilege.

7.10.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability dtigate its ill effects in the following ways:

=A =4 =4 =2

)l

Allow only certain file extensions, commonly known aghate-list.

Disallow certain file extensions, commonly known ddaaklist.

Use a utility to check the type of éHfile.

Check the contentype in the header information of all files that are uploadéthe purpose of the
contenttype field is to describe the data contained in the body completely enough that the receiving
agent can pick an appropriate agent or mecisamto present the data to the user, or otherwise deal with
the data in an appropriate manner.

Use a dedicated location, which does not have execution privileges, to store and validate uploaded files,
and then serve these files dynamically.

Require a unige file extension (named by the application developer), so only the intended type of the file
is used for further processing. Each upload facility of an application could handle a unique file type.
Remove all Unicode characters and all control charatfess the filename and the extensions.

Set a limit for the filename length; including the file extension. IN&R§New Technology File System)
partition, usually a limit of 255 characters, without path inforneatiwill suffice.

Set upper and lower limits on file size. Setting these limits can help in denial of service attacks.

All of the above have some short comings, for example, & @f}-file may contain a frelorm comment field,

and therefoe a sanity check of the files contents is not always possible. An attacker can hide code in a file
segment that will still be executed by the application or server. In many cases it will take a combination of the
techniques from the above list to avoitdis vulnerability.

7.10.5 Implications for standardization

In future standardization activities, the following items should be considered:

1

Language independent APIs for file identification should be defined, allowing each Programming
Language to define aring.

S Seehttp://www.ascii.cl/controkcharacters.htm

© ISTIEC2012¢ All rights reserved 123

http://www.ascii.cl/control-characters.htm

© 00 NO Ol W

10
11
12

13
14
15

16
17
18

19

20
21
22

23

24
25
26

27

28

29
30
31
32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

7.11

Resource Names[HTS]

7.11.1 Description of application vulnerability

Interfacing with the directory structure or other external identifiers on a systerwbich software executes is

very common. Differences in the conventions used by operating systems can result in significant changes in
behaviourwhen the same program is executed under different operating systems. For instance, the directory
structure, pemissible characters, case sensitivity, and so forth can vary among operating systems and even
among variations of the same operating systeffor exampleMicrosoftLINE K A 0 AFliéar Poukl K:YéaT 6 dzil
Linuxand OSZ LISNJ GAy3 aeéadasSvya tt2g yeé OKIFINIOGSNI SEOSLIG
filename.

Some operating systems are case sensitive while others are not. Gresersensitive operating systems,
dependingy (G KS a2F06F NS 0SAy3 dzaSRI GKS alkyYS FAE{SylYS
GCL[9b!a9¢ FyR Itf g2df R NBFSNI G2 (GdKS alryYS FAtSo

Some operating systems, particularly older ones, only rely on the significance of tlmedivastacters of theile
name. n can be unexpectedly small, such as the first 8 characters in the case of &vamii@ctures which would
Ol dzaS GFAESYyl YSMES GFAESYlIYSHE YR aFAESYlFYSoég (2

Variations in the filename, named raswe or external identifier being referenced can be the basis for various
kinds of problems.Such mistakesr ambiguity can be unintentionady intentional, and in either case they can be
potentially exploited, iburreptitious behaviour is a goal.

7.11.2 Crossreference

JSF AV Rules: 46, 51, 53, 54, 55, and 56
MISRA C 2004: 1.4 and 5.1
CERT C guililees: MSCOZ and MSC1Q

7.11.3 Mechanism of Failure

The wrong named resource, such as a file, may be used within a program in a form that provides axcess to
resource that was not intended to be accessed. Attackers could exploit this situation to intentionally misdirect
access of a named resource to another named resource.

7.11.4 Avoiding the vulnerability or mitigating its effects

Software developers caavoid the vulnerability or mitigate its ill effects in the following ways:

1

1

124

Where possible, use an API that provides a known common set of conventions for naming and accessing
external resources, such as POSIX, ISO/IEC 9945:2003 (IEEE St00003.1

Analze the range of intended target systems, develop a suitable API for dealing with them, and
document the analysis

Ensure that programs adapt thdiehaviourto the platform on which they are executing, so that only the
intended resources are accessed.eTheans that information on such characteristics as the directory

© ISQIEC2012 ¢ All rights reserve

O

o0k WNPE

10

11

12

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29

30
31
32
33
34
35

Baseline Editiol2 TR 24772 WG 23/N @10

separator string and methods of accessing parent directories need to be parameterized and not exist as
fixed strings within a program.

1 Avoid creating resource names that are longer thandgharanteed unique length of all potential target
platforms.

9 Avoid creating resources, which afi#ferentiatedonly by the case in their names.

1 Avoidall Unicode characters and all control characténdilenames and the extensions.

7.11.5 Implications for standardization
In future standardization activities, the following items should be considered:

1 LanguageéndependentAPIs for interfacing with external identifiers shouldd®fined, allowing each
Programming Language to define a binding

7.12 Injectio n [RST]

7.12.1 Description of application vulnerability

Injection problems span a wide range of instantiatiom$ie basic form of this weakness involves the software
allowing ingction of additional data in input data alter the control flow of the processCommand injection
problems are a subset of injection problem, in which the process can be tricked into calling external processes of
Fy Fadlr 01 SNRa OKenbi@8nmarid ByRtaizihio thé ikpB8t dataguliBeO i A
leading/internal/trailing special elements injected into an application through input can be used to compromise a
system. As data is parsed, improperly handled multiple leading special elements maythays®cess to take
unexpected actions that result in an attacRoftware may allow the injection of special elements that are-non
typical but equivalent to typical special elements with control implicatiofisis frequently occurs when the

product hasprotected itself against special element injectidBoftware may allow inputs to be fed directly into

an output file that is later processed as codach as library file or template Line or section delimiters injected

into an application can be uséd compromise a system.

Many injection attacks involve the disclosure of important informatiomn terms of both data sensitivity and
usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to a
remote vulrerability. Injection attacks are characterized by the ability to significantly change the flow of a given
process, and in some cases, to the execution of arbitrary cbBd¢a injection attacks lead to loss of data integrity
in nearly all cases as the ¢armi-plane data injected is always incidental to data recall or writi@ffen the

actions performed by injected control code are not logged.

SQL injection attacks are a common instantiation of injection attack, in which SQL commands are injected into
input to effect the execution of predefined SQL comman8@ce SQL databases generally hold sensitive data,
loss of confidentiality is a frequent problem with SQL injection vulnerabilitfiggorly implemented SQL
commands are used to check user nameg passwords, it may be possible to connect to a system as another
user with no previous knowledge of the passwolflauthorization information is held in a SQL database, it may
be possible to change this information through the successful exploitatitmedbQL injection vulnerability. Just

6 Seehttp://www.ascii.cl/controkcharacters.htm

© ISTIEC2012¢ All rights reserved 12E

http://www.ascii.cl/control-characters.htm

N

© 00 NO O~ W

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35
36
37
38
39
40

WG 23/N @10

Baseline Edition 2TR 24772

as it may be possible to read sensitive information, it is also possible to make changes or even delete this
information with a SQL injection attack.

Injection problems encompass a wide variety of issues! mitigaed in very different waysThe most important
issue to note is that all injection problems share one thing in commadhey allow for the injection of control

data into the user controlled dataThis means that the execution of the process may be altbyesending code

in through legitimate data channels, using no other mechanigvhile buffer overflows and many other flaws
involve the use of some further issue to gain execution, injection problems need only for the data to be parsed.
Many injection atacks involve the disclosure of important information in terms of both data sensitivity and
usefulness in further exploitation. In some cases injectable code controls authentication, this may lead to a

remote vulnerability.

7.12.2 Cross reference

CWE:

74.Failure to Sanitize Data into a Different Plane ('Injection’)

76. Failure to Resolve Equivalent Special Elements into a Different Plane

Ty® CILAfdzZNB G2 {FyAGATS 5FGF AyaG2 Ly h{ /2YYlIYyR
89: Improper Neutralization of Special Elemts used in an SQL Command (‘SQL Injection")

ond CHAfdNNB G2 {FyAGATS S5FdGF Ayd2 [5!'t vdSNASa oF

91. XML Injection (aka Blind XPath Injection)

92. Custom Special Character Injection

95. Insufficient Control of Directives in Dynamicathg€Evaluated Code (aka 'Eval Injection’)
97. Failure to Sanitize Serv8ide Includes (SSI) Within a Web Page

by ® LYAdFFAOASYd /2yGNBf 2F CAtSYlIYS F2NJ LyOf dRS«k
99. Insufficient Control of Reso@c L RSy i A TA SN&

144,
145.
161.
163.
165.
166.
167.
168.
564.

Failure to Sanitize Line Delimiters

Failure to Sanitize Section Delimiters

Failure to Sanitize Multiple Leading Special Elements
Failure to Sanitize Multiple Trailing Special Elements
Failue to Sanitize Multiple Internal Special Elements
Failure to Handle Missing Special Element

Failure to Handle Additional Special Element

Failure to Resolve Inconsistent Special Elements
SQL Injection: Hibernate

CERT C guililees: FIO36C

7.12.3 Mechanism of failure

A software system that accepts and executes input in the form of operating system comraackds$

system()

, exec()

,open()) could allow an attacker with lesser privileges than the target software to execute

commands with theslevated privileges of the executing proce€ommand injection is a common problem with
wrapper programs . Often, parts of the command to be run are controllable by the end udex.malicious user
injects a character (such as a semoion) that delimis the end of one command and the beginning of another, he
may then be able to insert an entirely new and unrelated command to do whatever he pleases.

126

© ISQIEC2012 ¢ All rights reserve

6F1F WwwSa2dNDS Lyasoi,

a b~ wN P

© 00 N O

10
11
12
13

14
15
16
17

18
19
20

21

22
23
24
25
26
27
28
29
30

31
32
33
34

35

36

Baseline Editiol2 TR 24772 WG 23/N @10

Dynamically generating operating system commands that include user input as parameters can lead todomman
injection attacks.An attacker can insert operating system commands or modifiers in the user input that can cause
the request to behave in an unsafe mann&uch vulnerabilities can be very dangerous and lead to data and
system compromiself no valichtion of the parameter to the exec command exists, an attacker can execute any
command on the system the application has the privilege to access.

There are two forms of command injection vulnerabilitids) attacker can change the command that the
programexecutes (the attacker explicitly controls what the commandAgdernatively, an attacker can change
the environment in which the command executes (the attacker implicitly controls what the command means).
The first scenario where an attacker explicitontrols the command that is executed can occur when:

{ Data enters the application from an untrusted source.

1 The data is part of a string that is executed as a command by the application.

1 By executing the command, the application gives an attacker dgge@vor capability that the attacker
would not otherwise have.

Eval injection occurs when the software allows inputs to be fed directly into a funstioh @s'eval”) that
dynamically evaluates and executes the input as code, usually in the sameéteerfanguage that the product
uses. Eval injection is prevalent in handler/dispatch procedures that might want to invoke a large number of
functions, or set a large number of variables.

A PHBHAile inclusion occurs when a PHP product usgsuire orinclude statements, or equivalent
statements, that use attackezontrolled data to identify code ddTML(HyperText Markup Language)be
directly processed by the PHP interpreter before inclusion in thiptscr

A resource injection issue occurs when the following two conditions are met:

1 An attacker can specify the identifier used to access a system resource. For example, an attacker might k
able to specify part of the name of a file to be opened or a parhber to be used.

1 By specifying the resource, the attacker gains a capability that would not otherwise be pernfitied.
example, the program may give the attacker the ability to overwrite the specified file, run with a
configuration controlled by the adicker, or transmit sensitive information to a thipdirty server.Note:
Resource injection that involves resources stored on the file system goes by the name path manipulation
and is reported in separate categorgeePath Traversal [EWRgscription forfurther details of this
vulnerability. Allowing user input to control resource identifiers may enable an attacker to access or
modify otherwise protected system resources.

Line or section delimiters injected into an application can be used to comprasgstem.As data is parsed, an
injected/absent/malformed delimiter may cause the process to take unexpected actions that result in an attack.
One example of a section delimiter is the boundary string in a multf&vtE (Multipurpose Internet Mail
Extensionsmessage. In many cases, doubled line delimiters can serve as a section delimiter.

7.12.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or naitéits ill effects in the following ways:

© ISTIEC2012¢ All rights reserved 127

© 00N O Ol B WDN P

e N ol el =
N o b WNPRERO

18

19

20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35
36

WG 23/N @10 Baseline Edition 2TR 24772

il
f

7.13

Assume all input is malicioutlse an ppropriate combination of blacksts and whitelists to ensure only
valid, expected and appropriate input is processed by the system.

Narrowly define the set of safe characters based on the expected values of the parameter in the request.
Developers should anticipate that delimiters and special elements would be
injected/removed/manipulated in the input vectors of their software systemd appropriate

mechanisms should be put in place to handle them.

Implement SQL strings using prepared statements that bind variaBlepared statements that do not

bind variables can be vulnerable to attack.

Use vigorous whitdist style checking on anyser input that may be used in a SQL commaRdther than
escape metacharacters, it is safest to disallow them entirely since the later use of data that have been
entered in the database may neglect to escape rtaracters before use.

Follow the pringple of least privilege when creating user accounts to a SQL databases should only

have the minimum privileges necessary to use their account. If the requirements of the system indicate
that a user can read and modify their own data, then limit theivileges so they cannot read/write

others' data.

Assign permissions to the software system that prevents the user from accessing/opening privileged files.
Restructure code so that there is not a need to usedhal() utility.

Cross-site Scripting [XYT]

7.13.1 Description of application vulnerability

Crosssite scripting XS¥occurs when dynamically generated web pagesplay input, such as loginformation

that is not properly validated, allowing an attacker to embed malicious scripts into the generated page and then
execute the script on the machine of any user that views the site. If successfulsiteossripthg vulnerabilities

can be exploited to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for a variety of
nefarious purposes.

7.13.2 Cross reference

CWE:

79.
80.
81.
82.
83.
84.
85.
86.
87.

128

Failure to Preserve Web Page Structure (‘'GsitesScripting’)

Failure to Sanitize ScriBelated HTML Tags in a Web Page (Basic XSS)
Failure to Sanitize Directives in an Error Message Web Page

Failure to Sarnite Script in Attributes of IMG Tags in a Web Page
Failure to Sanitize Script in Attributes in a Web Page

Failure to Resolve Encoded URI Schemes in a Web Page

Doubled Character XSS Manipulations

Invalid Characters in Identifiers

Alterndge XSS Syntax

© ISQIEC2012 ¢ All rights reserve

N o ok 0N

(o]

10
11
12
13
14
15
16

17
18
19
20

21
22
23
24
25

26

27
28
29
30
31
32
33
34

35
36
37
38
39

Baseline Editiol2 TR 24772 WG 23/N @10

7.13.3 Mechanism of failure

Crosssite scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious code,
generally JavaScrigio a different end userWhen a web application uses inplubm a user in the output it
generates without filtering it, an attacker can insert an attack in that input and the web application sends the
attack to other usersThe end user trusts the web application, and the attacks exploit that trust to do ttiags
would not normally be allowedAttackers frequently use a variety of methods to encode the malicious portion of
the tag, such as using Unicode, so the request looks less suspicious to the user.

XSS attacks can generally be categorized into two cag=sgstored and reflectedStored attacks are those

where the injected code is permanently stored on the target servers in a database, message forum, visitor log,
and so forth. Reflected attacks are those where the injected code takes another route tictim, such as in an
email message, or on some other servévhen a user is tricked into clicking a link or submitting a form, the
injected code travels to the vulnerable web server, which reflects the attack back to the user's browser. The
browser then executes the code because it came from a 'trusted' serkFer.a reflected XSS attack to work, the
victim must submit the attack to the serverhis is still a very dangerous attack given the number of possible
ways to trick a victim into submitting sbh a malicious request, including clicking a link on a malicious Web site, in
an email, or in amter-office posting.

XSS flaws are very common in web applications, as they require a great deal of developer discipline to avoid thel
in most applicationst is relatively easy for an attacker to find XSS vulnerabilitsesne of these vulnerabilities

can be found using scanners, and some exist in older web application servers. The consequence of an XSS atta
the same regardless of whether it is storedreflected.

The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end user
that range in severity from an annoyance to complete account comproriike.most severe XSS attacks involve
disclosure of the ser's session cookie, which allows an attacker to hijack the user's session and take over their
account. Other damaging attacks include the disclosure of end user files, installation of Trojan horse programs,
redirecting the user to some other page oresiand modifying presentation of content.

Crosssite scripting (XSS) vulnerabilities occur when:

1 Data enters a Web application through an untrusted source, most frequently a web request. The data is
included in dynamic content that is sent to a web uséhwut being validated for malicious code.

1 The malicious content sent to the web browser often takes the form of a segment of Java3dripay
also include HTML, Flash or any other type of code that the browser may exd@hde/arig¢y of attacks
based on XSS is almost limitless, but they commonly include transmitting private data like cookies or
other session information to the attacker, redirecting the victim to web content controlled by the
attacker, or performing other maliciougperations on the user's machine under the guise of the
vulnerable site.

Crosssite scripting attacks can occur wherever an untrusted user has the ability to publish content to a trusted
web site. Typically, a malicious user will craft a cliside scrip, whicht when parsed by a web browser
performs some activity (such as sending all site cookies to a giyeaileaddress)If the input is unchecked, this
script will be loaded and run by each user visiting the web Siace the site requesting toin the script has

access to the cookies in question, the malicious script does &lsere are several other possible attacks, such as

© ISTIEC2012¢ All rights reserved 12¢

© 00 N O O

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27

28

29

30
31
32
33
34
35
36
37
38

WG 23/N @10 Baseline Edition 2TR 24772

running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as trustworthy;
cookietheft is however by far the most commomll of these attacks are easily prevented by ensuring that no
script tagst or for good measure, HTML tags attalare allowed in data to be posted publicly.

Specific instances of XSS are:

1

)l

'‘Basic' XSS involvesamplete lack of cleansing of any special characters, including the most fundamental
XSS elements such as',"">", and '&".

A web developer displays input on an error pagiech asa customized 403 Forbidden pagdfan

attacker can influence a victino tview/request a web page that causes an error, then the attack may be
successful.

A Web application that trusts input in the form of HTML IMG tags is potentially vulnerable to XSS attacks.
Attackers can embed XSS exploits into the values for IMG agslfuch asSRC) that is streamed and

then executed in a victim's browseNote that when the page is loaded into a user's browser, the exploit
will automatically execute.

The software does not filtetBvaSript." or other URIs (Uniform Resource ldentifieflom dangerous
attributes within tags, such asmmouseover , onload , onerror , orstyle

The web application fails to filter input for executable script disguised with URI encodings.

The web apfcation fails to filter input for executable script disguised using doubling of the involved
characters.

The software does not strip out invalid characters in the middle of tag names, schemes, and other
identifiers, which are still rendered by some welmlsers that ignore the characters.

The software fails to filter alternate script syntax provided by the attacker.

Crosssite scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated
material to a trusted web sitéor the consumption of other valid user3he most common example can be found
in bulletinboard web sites that provide web based mailingdistie functionality. The most common attack
performed with crosssite scripting involves the disclosure of infation stored in user cookiedn some
circumstances it may be possible to run arbitrary code on a victim's computer whersitssripting is

combined with other flaws.

7.13.4 Avoiding the vulnerability or mitigating its effects

Software developersan avoid the vulnerability or mitigate its ill effects in the following ways:

il

130

Carefully check each input parameter against a rigenoositive specification (whitkst) defining the
specificcharacters and format allowed.

All input shold be sanitized, not just parameters that the user is supposed to specify, but all data in the
request, including hidden fields, cookies, head#re,URL(Uniform Resource Locatdt¥elf, and so

forth.

A common mistad that leads to continuing XSS vulnerabilities is to validate only fields that are expected
to be redisplayed by the site.

Data is frequently encountered from the request that is reflected by the application server or the
application that the developmeneam did not anticipate Also, a field that is not currently reflected may

© ISQIEC2012 ¢ All rights reserve

10

11

12
13
14
15

16

17

18
19

20

21

22
23
24

25

26
27

28

29
30

Baseline Editiol2 TR 24772 WG 23/N @10

be used by a future developef.herefore, validating ALL parts of tHd TP(Hypertext Transfer Protocpl
request is recommended.

7.14 Unquoted Search Path or Element [XZQ]

7.14.1 Description of application vulnerability

Strings injected into a software system that are nabted can permit an attacker to execute arbitrary
commands.

7.14.2 Cross reference

CWE:
428. Unquoted Search Path or Element
CERT C guililees: ENVOL

7.14.3 Mechanism of failure

The mechanism of failure stems from missing quoting of strings injectecinbftware systemBy allowing
white-spaces in identifiers, an attacker could potentially exearbitrary commandsThis vulnerability covers
"C:\ Program Files " and spacen-searchpath issues.Theoretically this could apply to otheperating
systansbesides Windows, especially those that make it easy for spaces to bananfidsor foldersnames

7.14.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the follomayg:

1 Software should quote the input data that can be potentially executed on a system.
1 Use a programming language that enforces the quoting of strings.

7.15 Improperly Verified Signature [XZR]

7.15.1 Description of application vulnerability

The software does not verify, or improperly verifies, the cryptographic signature for data. By not adequately
performing the verification step, the dabeing received should not be trusted and may be corrupted or made
intentionally incorrect by an adversary.

7.15.2 Cross reference

CWE:
347. Improperly Verified Signature

7.15.3 Mechanism of failure

Data is signed using techniques that assure the intggfithe data. There are two ways that the integrity can be
intentionally compromised. The exchange of the cryptoligies may have been compromised so that an

© ISTIEC2012¢ All rights reserved 131

11

12

13
14
15

16

17
18
19
20
21
22

23

24
25
26

27
28
29
30
31
32
33

WG 23/N @10 Baseline Edition 2TR 24772

attacker could provide encrypted data that has been altered. Alterabtithe cryptologic verification could be
flawed so that the encryptionf the data is flawed which again allows an attacker to alter the data.

7.15.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoidelvulnerability or mitigate its ill effects in the following ways:

I Use data signatures to the extent possible to help ensure trust in data.
9 Use builtin verifications for data.

7.15.5 Implications for standardization
In future standardization activitieshé following items should be considered:

9 Language independent APIs for data signing should be defined, allowing each Programming Language to
define a binding.

7.16 Discrepancy Information Leak [XZL]

7.16.1 Description of application vulnerability

A discrepancy information leak is an information leak in which the product behaves differently, or sends different
responses, in a way that reveakssrity-relevant information about the state of the product, such as whether a
particular operation was successful or not.

7.16.2 Cross reference

CWE:
203. Discrepancy Information Leaks
204. Response Discrepancy Information Leak
206. Internal Behaviourahtonsistency Information Leak
207. External Behavorial Inconsistency Information Leak
208. Timing Discrepancy Information Leak

7.16.3 Mechanism of failure

A response discrepancy information leak occurs when the product sends different messages in sii@tsedo
an attacker's request, in a way that allows the attacker to learn about the inner state of the prothuetieaks
can be inadvertenfbug) or intentional (design).

A behavioural discrepancy information leak occurs when the product's actiomaiadmportant differences

based on (1) the internal state of the product or (2) differences from other products in the same/Attaks

such as OS fingerprinting rely heavily on both behavioural and response discrep&uaciaternal behavioural
inconsistency information leak is the situation where two separate operations in a product cause the product to
behave differently in a way that is observable to an attacker and reveals seldtant information about the
internal state of the product, sth as whether a particular operation was successful or Aotexternal

behavioural inconsistency information leak is the situation where the software behaves differently than other

132 © ISTIEC2012 ¢ All rights reserve

10

11

12

13
14

15

16
17
18

19

20
21
22
23

24
25
26
27

28

29

30
31

Baseline Editiol2 TR 24772 WG 23/N @10

products like it, in a way that is observable to an attacker and regealsrityrelevant information about which
product is beingised, or its operating state.

A timing discrepancy information leak occurs when two separate operations in a product require different
amounts of time to complete, in a way that is observable t@tacker and reveals securitglevant information
about the state of the product, such as whether a particular operation was successful or not.

7.16.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerabilitynatigate its ill effects in the following ways:

1 Compartmentalizéhe system to have "safe" areas where trust boundaries can be unambiguously drawn.
1 Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing
with a compartment outside of the safe area

7.17 Sensitive Information Uncleared Before Use[XZK]

7.17.1 Descriptio n of application vulnerability

The software does not fully clear previously used information in a data structure, file, or other resource, before
making that resource available to another party that did not have access to the original information.

7.17.2 Crossreference

CWE:
226. Sensitive Information Uncleared Before Release
CERT C guililees: MEMO3C

7.17.3 Mechanism of failure

This typically involves memory in which the new dataupies less memory thahe old data, which leaves
portions of the old dga still available ("memory disclosu)e However, equivalent errors can occur in other
situations where the length of data is variable but the associated data structure iShist.can overlap with
cryptographic errors and cssboundary cleansing infmation leaks.

Dynamic memory managers are not required to clear freed memory and generally do not because of the
additional runtime overheadFurthermore, dynamic memory managers are free to reallocate this same memory.
As a rault, it is possible to accidentally leak sensitive information if it is not cleared before calling a function that
frees dynamic memoryProgrammers should not and c@nely on memory being cleared during allocation.

7.17.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use library functions and or programming language feat(sash as destructors or finalization
procedures}hat provide automatic earing of freed buffers or the functionality to clear buffers.

© ISTIEC2012¢ All rights reserved 133

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

32
33
34
35

36
37
38

WG 23/N @10 Baseline Edition 2TR 24772

7.18 Path Traversal [EWR]

7.18.1 Description of application vulnerability

The software constructs a pathdt contains relative traversal sequence such as ".." or an absolute path sequence

such as "/path/here." Attackers run the software in a particular directory so that the hard link or symbolic link
used by the software accesses a file that the attackerumater their control. In doing this, the attacker may be
able to escalate their privilege level to that of the running process.

7.18.2 Cross reference

CWE:
22. Path Traversal
24. Path Traversal.../filedir’
25. Path Traversal: '/..ffiledir'
26.PathTr OSNE I f Y UKRANKk POk FTFALTSYlIYSQ
27. Path Traversal: 'dir/../../flename’
28. Path Traversal:\filename'
29. Path Traversak.\filename'
30. Path Traversakdir\. \filename'
31. Path Traversal: 'dir\filename'
32. Path Traversal: '..." (Triple Dot)
33. Path Traversal: "...." (Multiple Dot)
34. Path Traversal: "..../I"
35. Path Traversal: "...[..II'
oTd® tFGK ¢NI GSNAFEfY Wkl o0a2fdziSkLI GKYlF YSKKSNBQ
oy ® t I K \abddt&pathiErmak 8 N8B Q
39. Path Traversal: 'C:dirname'
40. Path Traversak\UNGshare\nam@a' (Windows UNC Share)
61.UNIX Symbolic Link (Symlink) Following
62. UNIX Hard Link
64. Windows Shortcut Following (.LNK)
65. Windows Hard Link
CERT C guililees: FIO0ZX

7.18.3 Mechanism of failure

There are two primary ways that an attacker @anhestrate an attack using path traversal. In the first, the
attacker alters the path being used by the software to point to a location that the attacker has control over.
Alternatively, the attacker has no control over the path, but can alter the dirgstructure so that the path
points to a location that the attacker do&svecontrol over.

For instance, a software system that accepts input in the form diléname’, \. \filename',
‘[directory/../filename’, 'directory/../..[filename’, ' \filename', \. \filename', \directory\. \filename',

‘directoryA. \. \filename', "...", "...." (multiple dots), "....//", or "...[.../I' without appropriate validation can allow an

134 © ISTIEC2012 ¢ All rights reserve

w N

© 00 N O O b~

10
11
12
13
14
15
16
17
18
19

20
21
22
23

24
25
26
27

28

29

30
31
32
33
34
35
36
37
38
39

Baseline Editiol2 TR 24772 WG 23/N @10

attacker to traverse the file system to access an arbitrary file. Note thit ighored if the current working
directory is the root directorySome of these input forms can be used to cause problems for systems that strip
out".." from input in an attempt to remove relative path traversal.

There are several common ways that dtaeker can point a file access to a file the attacker has under their
control. A software system that accepts input in the form of '/absolute/pathname/here’ or

‘\absolutd pathnamahere' without appropriate validation can also allow an attacker to traweh® file system

to unintended locations or access arbitrary filédm attacker can inject a drive letter or Windows volume letter
(‘'C:dirname’) into a software system to potentially redirect access to an unintended location or arbitra#y file.
software system that accepts input in the form of a backslash absolute path without appropriate validation can
allow an attacker to traverse the file system to unintended locations or access arbitraryAfilesttacker can

inject a Windows UN@Jniversal Naming Convention or Uniform Naming Convensibaje

(\\UNGsharaname') into a software system to potentially redirect access to an unintended location or arbitrary
file. A softwae system that allows UNBymbolic links (symlinkas part of paths whether in internal code or
through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended
locations or accesarbitrary files. The symbolic link can permit an attacker to read/write/corrupt a file that they
originally did not have permissions to access. Failure for a system to check for hard links can result in vulnerabili
to different types of attacksFor example, an attacker can escalate their privileges if he/she can replace a file
used by a privileged program with a hard link to a sensitive file, for exaetplpasswd . When the process

opens the file, the attacker can assume the privileges of that psoces

A software system that allows Windows shortcuts (.LNK) as part of paths whether in internal code or through use
input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or
access arbitrary filesTheshortcut (file with thellnk extension) can permit an attacker to read/write a file that

they originally did not have permissions to access.

Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example
attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hard link to
sensitive file guch astc/passwd). When the process opens the file, the attacker can assume the privileges of
that process or pasbly prevent a program from accurately processing data in a software system.

7.18.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Assume all input isnalicious. Attackers can insert paths into input vectors and traverse the file system.

1 Use an ppropriate combination of blacksts and whitelists to ensure only valid and expected input is
processed by the system.

f A sanitizing mechanism can removeda OG SNB & dzOK | & WdU or goRe eiplofts. ¢ K
An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerous Soppose
GKS FadF O1 SNJ Ay 2 S 6ay senski.tiviFibet) and 1hé skilry meéchahisnt rénduesitd o
character resulting in the valid filename, "sensitiveFilé'the input data are now assumed to be safe,
then the file may be compromised.

9 Files can often be identified by other attributes in addition to the file name, fan®le, by comparing
file ownership or creation time. Information regarding a file that has been created and closed can be

© ISTIEC2012¢ All rights reserved 13E

© 00N Ol WDN P

el o el
O UM WNIERO

17

18

19
20

21

22
23
24

25

26
27
28

29

30

31
32

WG 23/N @10 Baseline Edition 2TR 24772

stored and then used later to validate the identity of the file when it is reoper&anparing multiple

attributes of the file impoves the likelihood that the file is the expected one.

Follow the principle of least privilege when assigning access rights to files.

Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file.

Ensure good copartmentalization in the system to provide protected areas that can be trusted.

When two or more users, or a group of users, have write permission to a directory, the potential for

sharing and deception is far greater than it is for shared access to fldewThe vulnerabilities that

result from malicious restructuring via hard and symbolic links suggest that it is best to avoid shared
directories.

1 Securely creating temporary files in a shared directory is error prone and dependent on the version of the
runtime library used, the operating system, and the file syst&uode that works for a locally mounted
file system, for example, may be vulnerable when used with a remotely mounted file system.

1 The mitigation should be centered on converting relativehgahto absolute paths and then verifying
that the resulting absolute path makes sense with respect to the configuration and rights or pensissi
This may include checkinghite-lists andblacklists, authorized super user status, access control lats,
other fully trusted status

=A =4 =4 =4

7.19 Missing Required Cryptographic Step [XZ]

7.19.1 Description of application vulnerability

Qyptographic implementations should follow the algorithms that define them exaatherwise encryptiorcan
be faulty.

7.19.2 Cross reference

CWE:
325. Missing Required Cryptographic Step
327. Use of a Broken or Risky Cryptographic Aflym

7.19.3 Mechanism of failure

Not following the algorithms that define cryptographic implementations exactly can lead to weak encryption.
This could be the result of many factors such as a programmer missing a required cryptographic step or using
weakrandomization algorithms.

7.19.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Implement cryptographic algorithms precisely.
1 Use system functions arbraries rather than writing the function.

136 © ISTIEC2012 ¢ All rights reserve

10
11
12
13
14
15
16
17

18
19
20

21
22
23

24

25

26
27
28
29

30

31

32

Baseline Editiol2 TR 24772 WG 23/N @10

7.20 Insufficiently Protected Credentials [XYM]

7.20.1 Description of applicatio n vulnerability

This weakness occurs when the application transmits or stores authentication credentials and uses an insecure
method that is susceptible to unauthorized interception and/or retrieval.

7.20 .2Cross reference

CWE:
256. Plaintext Storage ofRassword
257. Storing Passwords in a Recoverable Format

7.20.3 Mechanism of failure

Storing a password in plaintext may result in a system comproniiaesword management issues occur when a
password is stored in plaintext in an application's propertiesonfiguration file.A programmer can attempt to
remedy the password management problem by obscuring the password with an encoding function, such as
Base64 encoding, but this effort does not adequately protect the passwistaring a plaintext passwoid a
configuration file allows anyone who can read the file access to the pasgwotected resource.Developers
sometimes believe that they cannot defend the application from someone who has access to the configuration,
but this attitude makes an att&ker's job easier Good password management guidelines require that a password
never be stored in plaintext.

The storage of passwords in a recoverable format makes them subject to password reuse attacks by malicious
users. If a system administrator cancever the password directly or use a brute force search on the information
available to him, he can use the password on other accounts.

The use of recoverable passwords significantly increases the chance that passwords will be used maliiciously.
fact, t should be noted that recoverable encrypted passwords provide no significant benefit ovetgxtin
passwords since they are subject not only to reuse by malicious attackers but also by malicious insiders.

7.20.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Avoid storing passwords in easily accessible locations.

Never store a password in plaintext.

Ensure that strong, nereversible encryption is ugkto protect stored passwords.

Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.

= =4 =4 =

7.21 Missing or Inconsistent Access Control [XZN]

7.21.1 Description of application vulnerability

The software does not perform access control checks in a consistent manner across all potential execution paths

© ISTIEC2012¢ All rights reserved 137

O OB WN

10

11

12

13
14
15
16
17

18

19

20

21

22
23
24
25
26
27
28
29
30
31

WG 23/N @10 Baseline Edition 2TR 24772

7.21.2 Cross reference

CWE:

285. Missiig or Inconsistent Access Control

352 CrossSite Request Forgery (C$RF

807. Reliance on Untrusted Inputs in a Security Decision
CERT C guililees: FIO0&C

7.21.3 Mechanism of failure

For web applications, attackers can issue a request directly to a pigje) that they may not be authorized to
access.If the access control policy is not consistently enforced on every page restricted to authorized users, then
an attacker could gain access to and possibly corrupt these resources

7.21.4 Avoiding the vulner ability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 For web applications, make sure that the access control mechanism is enforced correctly at the server
side on every pageUsers should not be able to access any informasiomply by requesting direct access
to that page, if they do ndbtaveauthorization Ensure that all pages containing sensitive information are
not cached, and that all such pages restrict access to rés|tiest are accompanied by an active and
authenticated session token associated with a user who has the required permissions to access that page.

7.22 Authentication Logic Error [XZO]

7.22.1 Description of application vulnerability
The software does not properly ensure that the user has proven their identity
7.22.2 Cross reference

CWE:
287. Improper Authentication
288. Authentication Bypass bytérnate Path/Channel
289. Authentication Bypass by Alternate Name
290. Authentication Bypass by Spoofing
294. Authentication Bypass by Captusplay
301. Reflection Attack in an Authentication Protocol
302. Authentication Bypass by Assurdetnutable Data
303. Improper Implementation of Authentication Algorithm
305. Authentication Bypass by Primary Weakness

138 © ISTIEC2012 ¢ All rights reserve

AW

© 00 N O O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Baseline Editiol2 TR 24772 WG 23/N @10

7.22.3 Mechanism of failure

There are many ways that an attacker can potentially bypass the validation of a user. Some of the ways are
means of impergnating a legitimate user while others are means of bypassing the authentication mechanisms
that are in place. In either case, a user who should not have access to the software system gains access.

Authentication bypass by alternate path or channel oceungen a product requires authentication, but the
product has an alternate path or channel that does not require authenticatiuie that this is often seen in web
applications that assume that access to a partic@&i{CommonGateway Interfaceprogramcan only be
obtained through a "front" screen, but this problem is not just in vegiplications

Authentication bypass by alternate name occurs when the software performs authentication based on the name
of the resource being accessed, but there are ipidtnames for the resource, and not all names are checked.

Authentication bypass by captureplay occurs when it is possible for a malicious user to sniff network traffic and
bypass authentication by replaying it to the server in question to the safeetefs the original message (or with
minor changes).Messages sent with a capturelay attack allow access to resources that are not otherwise
accessible without proper authenticatiorCapturereplay attacks are common and can be difficult to defeat
without cryptography.They are a subset of network injection attacks that @yistening in on previously sent

valid commands, then changing them slightly if necessary and resending the same commands to theSgsrger.
any attacker who can listen todffic can see sequence numbers, it is necessary to sign messages with some kind
of cryptography to ensure that sequence numbers are not simply doctored along with content.

Reflection attacks capitalize on mutual authentication schetodsck the targetinto revealing the secret shared
between it and another valid usefn a basic mutuahuthentication scheme, a secret is known to both a valid

user and the server; this allows them to authenticate. In order that they may verify this shared secret without
sending it plainly over the wire, they utilize a DHfiellmanstyle scheme in which they each pick a value, then
request the hash of that value as keyed by the shared secret. In a reflection attack, the attacker clairas to be
valid user and requests the hash of a random value from the sel/en the server returns this value and
requests its own value to be hashed, the attacker opens another connection to the s&hisrtime, the hash
requested by the attacker is thele that the server requested in the first connectioWhen the server returns

this hashed value, it is used in the first connection, authenticating the attacker successfully as the impersonated
valid user.

Authentication bypass by assumé@dmutable dag occurs when the authentication scheme or implementation
uses key data elements that are assumed to be immutable, but can be controlled or modified by the aftacker,
example if a web application relies on a cookiguthenticated=1 "

Authentication Igjic error occurs when the authentication techniques do not follow the algorithms that define
them exactly and so authentication can be jeopardized. For instance, a malformed or improper implementation of

an algorithm can weaken the authorization technique.

An authentication bypass by primary weakness occurs when the authentication algorithm is sound, but the

© ISTIEC2012¢ All rights reserved 13¢

© 00 N o O

10
11
12
13

14

15

16
17
18
19
20

21

22
23
24

25

26
27
28
29
30
31
32
33
34
35
36

WG 23/N @10 Baseline Edition 2TR 24772

implemented mechanism can be bypassed as the result of a separate weakness that is primary to the
authentication error.

7.22.4 Avoiding the vulnerabil ity or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Funnel all access through a single choke point to simplify how users can access a résouesery
access, perform a cheti determine if the user has permissions to access the resoukgeid making
decisions based on names of resourdes €xample files) if those resaees can have alternate names.

i Canonicalize the name to match that of the file system's representafidimeoname. This can sometimes
be achieved with an available ARIr(examplejn Win32 theGetFullPathName function).

9 Utilize some sequence or time stamping functionality along with a checksum that takes this into account
to ensure that mesages can be psed only once.

1 Use different keys for the initiator and responder or of a different type of challenge for the initiator and
responder.

7.23 Hard-coded Password [XYP]

7.23.1 Description of application vulnerability

Hard coded passwords may compromise system security in a way that cannot be easily rerttddirdver a
good idea to hardcode a passworlNot only does hard coding a password allow all of thgqmtts developers to
view the password, it also makes fixing the problem extremely difficditce the code is in production, the
password cannot be changed without patching the softwdféhe account protected by the password is
compromised, the owner of the system will be forced to choose between security and availability.

7.23.2 Cross reference

CWE:
259. HardCoded Password
798. Use of Haretoded Credentials

7.23.3 Mechanism of failure

The use of a hardoded password has many negative implicatiqtise most significant of these being a failure

of authentication measures under certain circumstanc®s many systems, a default administration account
exists which is set to a simple default password that is {takd into the program or devicel hishard-coded
password is the same for each device or system of this type and often is not changed or disabled by enfl users.

a malicious user comes across a device of this kind, it is a simple matter of looking up the default password (which

is likely feely available and public on the Internet) and logging in with complete actesystems that
authenticate with a baclend service, har¢oded passwords within closed source or dingsolution systems
require that the baclend service use a passwordatican be easily discovere@lientside systems with hard

coded passwordpresenteven more of a threat, since the extraction of a password from a binary is exceedingly
simple. If hardcoded passwords are used, it is almost certain that unauthorizedswgié gain access through

the account in question.

140 © ISTIEC2012 ¢ All rights reserve

© 00 NO Ol W

10
11
12

13

14

15
16
17
18

19

20
21

22
23

24

25

26
27
28
29
30
31

32

33

Baseline Editiol2 TR 24772 WG 23/N @10

7.23.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Rather than hard code a default username gragsword for first time logins, utilize a "first login" mode
that requires the user to enter a unique strong password.
1 For frontend to backend connections, there are the solutions that may be used.
1. Use of generated passwords that are changed autoraifi@and must be entered at given time
intervals by a system administratof.hese passwords will be held in memory and onlyédd&l
for the time intervals.
2. The passwords used should be limited at the back end to only performing actions for the front
end,asopposed to having full access.
3. The messages sent should be tagged and checksummed with time sensitive values so as to
prevent replay style attacks.

8. New Vulnerabilities

8.1 General

This claus@rovides languagindependent descriptions ofulnerabilties under consideration for inclusion in the
next edition d this InternationalTechnical Reportlt is intended that revisions of these descriptions will be
incorporated into Clauses 6 and 7 of the next edition and that they will be treated in thedgegpecific
annexes of that edition

8.2 Terminology

The following descriptions are written in a languagdependent manner except when specific languages are
used in examples.

This clause will, in general, use the terminology that is most natural tdekeription of each individual
vulnerability. Hence the terminology may differ from description to description.

8.3 Concurrency z Activation [CGA]

8.3.1 Description of application vulnerability

A vulnerability can occur if an attempt has been made to activate a thread, but a programming error or the lack of
some resource prevents the activation from completifigne activating thread may not have sufficierdiwility or
awareness into the execution of the activated thread to determirikefactivation has been successfllhe
unrecognized activation failure can cause a protocol failure in the activating thread or in other threads that rely
upon some actiomy the unactivated threadThis may cause the other thread(s) to wait forever for some event
from the unactivated thread, or may cause an unhandled event or exception in the other threads.

8.3.2 Cross References

CWE:

© ISTIEC2012¢ All rights reserved 141

N o ok WODN P

10
11
12
13
14
15
16

17
18
19
20
21
22

23
24
25
26
27

28
29
30

31

32

33
34
35
36

WG 23/N @10

364. Signal Handler Race Condition
Hoae A., 'Communicating Sequential Process&sentice Hall, 1985
Holzmann G.,The SPIN Model Checker: Principles and Reference Mahddison Wesley Professional. 2003
UPPAAL, available from www.uppaal.com,
Larsen, Peterson, Wandyibdel Checking for ReTime Systenis Proceedings of the flnternational
Conference on Fundamentals of Computation Theory, 1995
Ravenscar Tasking Profispecified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007

8.3.3

Mechanism of Failure

Baseline Edition 2TR 24772

The context of the problens that all threads except the main thread are activated by program steps of another
thread. The activation of each thread requires that dedicated resources be created for that thread, such as a
thread stack, thread attributes, and communication porisinsufficient resources remain when the activation
attempt is made, the activation will faiSimilarly, if there is a program error in the activated thread or if the
activated thread detects an error that causes it to terminate before beginning its waik, then it may appear

to have failed during activatiorr KSy (K S
failure because of a lack of resources will not ocd¢diowever errors may occur for reasons other than resource
allocation and the results of an activation failure will be similar.

FOGAGIGA2Y Aada GaldldAaOés NBazd

If the activating thread waits for each activated thread, then the activating thread will likely be notified of
activation failures (if the particular construct or capability support$vation failure notification) and can be
programmed to take alternate actiorf notification occurs but alternate action is not programmed, then the
program will execute erroneouslyf the activating thread is loosely coupled with the activated threaahsl the
activating thread does not receive natification of a failure to activate, then it may wait indefinitely for the
unactivatedthreadto do its work, or may make wrong calculations because of incomplete data.

Activation of a single threaid a spedl case of activations of collections of threads simultaneouBhys

paradigm (activation of collections of threads) can be used in languages that parallelise calculations and create
anonymous threads to execute each slice of data. In such situatiorectivating thread is unlikely to individually
monitor each activated thread, so a failure of some to activate without explicit notification to the activating
thread can result in erroneous calculations.

If the rest of the application is unaware that artigation has failed, an incorrect execution of the application
algorithm may occur, such as deadlock of threads waiting for the activated thread, or possibly causing errors or
incorrect calculations.

8.3.4 Applicable language characteristics

This vulneraltity is intended to be applicable to languages with the following characteristics:

1 All languages that permit concurrency within the language, or that use support libraries and operating
systems (such as PO8PWindow§ that provide concurrency control mechanisms. In essence all
traditional languages on fully functional operating systems (such as fo@pfiant OS or Windows) can

142

access the Ofrovided mechanisms.

© ISQIEC2012 ¢ All rights reserve

=

N

© 00 N O O & W

10
11

12

13

14
15

16

17

18
19

20
21
22
23
24
25

26
27

28

29
30
31
32
33
34

Baseline Editiol2 TR 24772 WG 23/N @10

8.3.5 Avoiding the vulnerability or mitigatin gits effects
Sdtware developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Always check return codes on operating system command, library provided or language thread activation
mechanisms.

1 Handle errors and exceptions that occur arigation.

1 Create explicit synchronization protocols, to ensure that all activations have occurred before beginning
the parallel algorithm, if not provided by the language or by the threading subsystem.

1 Use programming language provided features thatpieuhe activated thread with the activating thread
to detect activation errors so that errors can be reported and recovery made.

1 Use static activation in preference to dynamic activation so that static analysis can guarantee correct
activation of threads.

8.3.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Consider including automatic synchronization of thread initiation as part of the concurrency model.
1 Provide a mechanism permitting queof activation success.

8.4 Concurrency z Directed termination [CGT]

8.4.1 Description of application vulnerability

This discussion is seciated with the effects of unsuccessful or late termination of a thrdaat. a discussion of
premature termination, se¢CG$Concurrency;, Premature Termination.

When a thread is working cooperatively with other threads and is directed to terminates tire a number of

error situations that may occur that can lead to compromise of the sysfEne termination directing thread may
request that one or more other threads abort or terminate, but the terminated thread(s) may not be in a state
such that thetermination can occur, may ignore the direction, or may take longer to abort or terminatettie
application can tolerate. In any case, on most systems, the thread will not terminate until it is next scheduled for
execution.

Unexpectedly delayed termitian or the consumption of resources by the termination itself may cause a failure
to meet deadlines, which, in turn, may lead to other failures.

8.4.2 Cross references

CWE:

364.Signal Handler Race Condition
Hoare C.A.R.Communicating Sequential Proces’s Prentice Hall, 1985
Holzmann G.,The SPIN Model Checker: Principles and Reference Mahddison Wesley Professional. 2003
Larsen, Peterson, Wangdvibdel Checking for Re@imeSystem’, Proceedings of the 10th International
Conference on Fundamals of Computation Theory, 1995

© ISTIEC2012¢ All rights reserved 143

10

11

12
13

14

15

16
17
18
19
20
21
22
23

24

25

26
27

28

29

30
31
32

WG 23/N @10 Baseline Edition 2TR 24772

The Ravenscar Tasking Profdpecified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007

8.4.3 Mechanism of failure

The abort of a thread may not happen if a thread is in an abdeférred region and does not leaveattregion
(for whatever reason) after the abort directive is givedimilarly, if abort is implemented as an event sent to a
thread and it is permitted to ignore such events, then the abort will not be obeyed.

The termination of a thread may not happerhé thread ignores the directive to terminate, or if the finalization
of the thread to be terminated does not complete.

If the termination directing thread continues on the false assumption that termination has completed, then any
sort of failure may ocau

8.4.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

1 All languages that permit concurrency within the language, or support libraries and opergsitegs
(such as PO%compliantor Windowsoperating systemsthat provide hooks for concurrency control.

8.4.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate itfféicts in the following ways:

1 Use mechanims of the language or system to determine that aborted threads or threads directed to
terminate have successfully terminate@uch mechanisms may include direct communication, runtime
level checks, explicit dependenmsiationships, or progress countersshared communication code to
verify progress.

M1 Provide mechanisms to detect and/or recover from failed termination.

9 Use static analysis techniques, such as CSP or robdeking to show that thread termination is safely
handled.

1 Where appropriate, use seldduling models where threads never terminate.

8.4.6 Implications for standardization
In future standardization activities, the folldmg items should be considered:

1 Provide a mechanism (either a language mechanism or a serviceocatiphal either anothethreador an
entity that can be queried by other threads when a thread terminates.

8.5 Concurrent Data Access [CGX]
8.5.1 Description of application vulnerabili ty

Concurrency presents a significant challenge to program correctly, and has a large number of possible ways for
failures to occur, quite a few known attack vectors, and many possible but undiscovered attack victors.
particular, data visible from morian one thread and not protected by a sequential access lock can be corrupted

144 © ISTIEC2012 ¢ All rights reserve

© 00 N O O b~

10
11
12
13

14
15
16

17

18
19
20
21
22

23

24

25
26
27

28

29

30
31
32
33
34
35

Baseline Editiol2 TR 24772 WG 23/N @10

by outof-order accessesThis, in turn, can lead to incorrect computation, premature program termination,
livelock, or system corruption

8.5.2 Cross references

CWE:
214 Information Exposure Through Process Environment
362 Concurrent Execution using Shared Resource with Improper Synchronization (‘Race Condition’)
366. Race Condition Within a Thread
368 Context Switching Race Conditions
413 Improper Resource Locking
764. Multiple Locks of a Critical Resource
765. Multiple Unlocks of a Critical Resource
820. Missing Synchronization
821 Incorrect Synchronization

ISO IEC 86%rogramming Language Adeith TC 1:2001 and AM 1:2007.
Burns A. and Wellings A., Language Vulrigtas-[SG Q& y2G FT2NHSG /2y OdzZNNBy Oeé =
C.A.R Hoare, A model for communicating sequential processes, 1980

8.5.3 Mechanism of failure

Shared data can be monitored or updated directly by more than one thread, possibly circumventing any access
lock protocol in operationSome concurrent programs do not use access lock mechanisms but rely upon other
mechanisms such as timing or other program state to determine if shared data can be read or updated by a
thread. Regardless, direct visibility shared data permits direct access to such data concurre@ttpitrary

behaviour of any kind can result.

8.5.4 Applicable language characteristics
The vulnerability is intended to be applicable to

1 All languageshat provide concurrent execution and dathaging, whether as part of the language or by
use of underlying operation system facilities, including facilities such as event handlers and interrupt
handlers.

8.5.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the netability or mitigate its effects in the following ways.

1 Place all data in memory regions accessible to only one thread at a time.

1 Use languages and those language features that provide a robust sequential protection paradigm to
protect against data cortion. For example, Ada's protected objects and Java's Protected class, provide
a safe paradigm when accessing objects that are exclusive to a single program.

1 Use operating system primitives, such as the POSIX locking primitives for synchronizatioeidp de

i A 2 4 A x

LINR G202t SldaA@rfSyd G2 GKS ' RF aLINRGSOGSRE | yR

© ISTIEC2012¢ All rights reserved 14E

N

© 00 N O

10
11

12

13

14
15
16

17
18
19
20
21

22

23
24
25
26
27
28
29

30

31
32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

1 Where order of access is important for correctness, implement blocking and releasing paradigms, or
provide a test in the same protected region to check for correct ordergameerate errors if the test fails.
For example, the following structure in Ada could be used to implement an enforced order.

8.5.6 Implications for standardization
In future standardisation activities, the follamg items should be considered:

i Languageshiat do not presently consider concurrency should consider creating primitives that let
applications specify regions of sequential access to dsliechansms such as protected regiortépare
monitors or synchronous message passing between threads residjrificantly fewer resource access
mistakes in a program.

Provide the possibility of selecting alternative concurrency models that support static analysis, such as one of the
models that are known to have safe properti¢sor examples, se®]} [10],and [17].

8.6 Concurrency z Premature Termination [CGS]

8.6.1 Description of application vulnerability

When a thread is working cooperagily with other threads and terminates prematurely for whatever reason but
unknown to other threads, then the portion of the interaction protocol between the terméddhread and other
threads is damagedThis may result in:

1 indefinite blocking of the otér threads as they wait for the terminated thread if the interaction protocol
was synchronous;

9 other threads receiving wrong or incomplete results if the interaction was asynchronous; or

9 deadlock if all other threads were depending upon the terminateealdl for some aspect of their
computation before continuing.

8.6.2 Cross references

CWE

364. Signal Handler Race Condition
Hoare C.A.R.Communicating Sequential Process&sentice Hall, 1985
Holzmann G.,The SPIN Model Checker: Principles and Rekidanual, Addison Wesley Professional. 2003
Larsen, Peterson, Wangvibdel Checking for Re@ime SystenisProceedings of the 10th International
Conference on Fundamentals of Computation Theory, 1995
The Ravenscar Tasking Profdpecified in ISO/IEG®2:1995 Ada with TC 1:2001 and AM 1:2007

8.6.3 Mechanism of failure

If a thread terminates prematurely, threads that depend upon services from the terminated thread (in the sense
of waiting exclusively for a specific action before continuing) may wast/éarsince held locks may be left in a
locked state resulting in waiting threads never being released or messages or events expected from the
terminated thread will never be received.

146 © ISTIEC2012 ¢ All rights reserve

a b~ W NP

10

11

12
13
14
15
16
17

18

19

20
21

22

23

24
25
26
27
28
29
30
31

Baseline Editiol2 TR 24772 WG 23/N @10

If a thread depends on the terminating thread and receives notificatfciermination, but the dependent thread
ignores the termination notification, then a protocol failure will occur in the dependent thré&amt.asynchronous
termination events, an unexpected event may cause immediate transfeordfol from the executiorof the
dependent thread to another (possible unknowagation, resulting in corrupted objects or resources; or may
cause terminationin the master thread.

These conditions can result in

premature shutdown of the system;
corruption or arbitrary execubin of code;
livelock;

deadlock;

=A =4 =4 =4

depending upon how other threads handle the termination errors.

If the thread termination is the result of an abort and the abort is immediate, there is nothing that can be done
within the aborted thread to prepare dataifeeturn to master tasks, except possibly the management ttriga
operating system) notifyingther threads that the event occurredf the aborted thread was holding resources or
performing active updates when aborted, then any direct access by dfineads to such locks, resources or
memory may result in corruption of those threads or of the complete system, up to and including arbitrary code
execution.

8.6.4 Applicable language characteristics

This vulnerability is intended to be applicable to langemwith the following characteristics:

1 Languages that permit concurrency within the language, or support libraries and operating systems (such
as POSEompliant or Windows operating systems) that provide hooks for concurrency control.

8.6.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use concurrency mechanisms that are known to be robust.

1 At appropriate times use mechanisms of the language or systedetermine that necessary threads are
still operating. Such mechanisms may be direct communication, runtievel checks, explicit
dependency relationships, or progress counters in shared communication code to verify progress.

1 Handle events and exceaphs from termination.

1 Provide manager threads to monitor progress and to collect and recover from improper terminations or
abortions of threads.

i Use static analysis techniques, such as model checking, to show that thread termination is safely handlec

”This may cause the failure to propagate to other threads.

© ISTIEC2012¢ All rights reserved 147

00 N O 0ol AW =

©

10

11

12
13
14
15
16
17

18
19

20
21
22
23

24

25
26
27
28
29
30
31
32

33

WG 23/N @10 Baseline Edition 2TR 24772

8.6.6

Implications for standardization

In future standardization activities, the following items should be considered:

|l

Provide a mechanism to preclude the abort of a thread from another thread during critical pieces of code.
Some languages (for examphgjaor RealTime Javpaprovide a notion of an abodeferred region.

Provide a mechanism to signal another thread (or an entity that can be queried by other threads) when a
thread terminates.

Provide a mechanism that, within criticabpes of code, defers the delivery of asynchronous exceptions

or asynchronous transfers of control.

8.7 Protocol Lock Errors [CGM]

8.7.1 Description of application vul nerability

Concurrent programs use protocols to control

=A =4 =4 =4 =4 =4

The way that threads interact with each other,

How to schedule the relative rates of progress,

How threads participate in the generation and consumption of data
The allocation of threads to the vaus roles

The preservation of data integrity, and

The detection and correction of incorrect operations.

When protocols ar@ot correct, or when a vulnerability lets an exploit destroy a protocol, then the concurrent
portions fail to work ceoperativelyand the system behaves incorrectly.

This vulnerability is related to [CGX] Shared Data Access and Corruption, which discusses situations where the
protocol to control access to resources is explicitly visible to the participating partners and makewiggaeof
shared resources. In comparison, this vulnerability discusses scenarios where such resources are protected by
protocols, and considers ways that the protocol itself may be misused.

8.7.2

CWE

Cross references

413 Improper Resource Locking
414 Missing Lock Check
609. Double Checked Locking
667. Improper Locking
821 Incorrect Synchronization
833. Deadlock
C.A.RHoare, A model for communicating sequential processes, 1980

Larsen, K.G., Petterssen, P, Wang, Y, UPPAAL in a nutshell, 1997

148

© ISQIEC2012 ¢ All rights reserve

a b~ WwN

© 00 N O

10

11
12
13
14
15
16
17

18
19
20
21
22
23
24

25

26

27
28
29
30

31

32

33
34

Baseline Editiol2 TR 24772 WG 23/N @10

8.7.3 Mechanism of failure

Threads use locks and protocols to schedule their work, control access to resources, exchange data, and to effec
communication with each otherProtocol errors occur when the expected rules foraperation are not

followed, or when the ader of lock acquisitions and release causes the threads to quit working togethese

errors can be as a result of:

deliberate termination of one or more threagsrticipating in the protocol,
disruption of messages or intez@ons in the protocol,

errors or exceptions raised in threadsrpeipating in the protocol, or

errors in the programming of one or more threads participating in the protocol.

= =4 =4 =

In such situations, there are a number of possible consequences

1 deadlock where every thead eventually quits computing as it waits for results from another thread,
further progress in the system is made,

91 livelock where one or more threads commandeer all of the computing resource and effectively lock out
the other portiors, no further progress in the system is made,

1 data may be corrupted or lack currency (timeliness), or

9 one or more threads detect an error associated with the protocol and terminate prematurely, leaving the
protocol in an unrecoverable state.

The potentiadamage from attacks on protocols depends upon the nature of the system using the protocol and
the protocol itself. Selfcontained systems using private protocols can be disrupted, but it is highly unlikely that
predetermined executions (including arbityacode execution) can be obtaine@n the other extremethreads
communicating openly between systems using wieltumented protocols can be disrupted in any arbitrary
fashion with effects such as the destruction of system resources (such as a dat#mgeneration of wrong but
plausible data, or arbitrary code executiolm fact, many documented clierserver based attacks consist of some
abuse of a protocol such as SQL transactions.

8.7.4 Applicable language characteristics
The vulnerability is inteded to be applicable to languages with the following characteristics:

Languages that support concurrency directly.

Languages that permit calls to operating system primitives to obtain concurrent behaviours.
Languages that permit 10 or other interactiortiwéxternal devices or services.

Languages that support interrupt handling directly or indirectly (via the operating system).

=A =4 =4 =

8.7.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its effiectse following ways

1 Consider the use of synchronous protocols, such as defin€B®y Petri Nets or by thela rendezvous
protocol since these can be statically shown to be free from protocol errors such as deadlock and livelock

© ISTIEC2012¢ All rights reserved 14¢

© 00 N Ol WDN P

e
N R O

13

14

15
16
17

18

19

20
21
22
23
24

25

26
27
28
29

WG 23/N @10 Baseline Edition 2TR 24772

8.7.6

Consider the use ofraple asynchronous protocols that exclusively use concurrenatiiseand protected
regions such as defined by the Ravenscar TasRnodjle, whichcan also be shown statically to have
correct behaviour using model checking technologies, as show#ghy [

When static verification is not possible, consider the use of detection and recovery techniques using
simple mechanisms and protocols that can be verified independently from the main concurrency
environment. Watchdog timers coupled with checkpoints congtitohe such approach.

Use higHevel synchronization paradigms, for example monitoesdezvous, or critical regions.

Design the architecture of the application to ensure that some threads or tasks never block, and can be
available for detection of concrency error conditions and for recovery initiation.

Use model checkers to model the concurrent behaviour of the complete application and check for states
where progress failsPlace all locks and releases in the same subprograms, and ensure that theforder
calls and releases of multiple locks are correct.

Implications for standardization

In future standardization activities, the following items should be considered:

f
T
)l

Raise the level of abstraction for concurrency services.
Provide services or mechisms to detect and recover from protocol lock failures.
Design concurrency services that help to avoid typical failures such as deadlock.

8.8 Inadequately Secure Communication of Shared Resources [CGY]

8.8.1 Description of application vulnerability

A resource that is directly visible from more than one process (at the same approximate time) and is not
protected by access locks can be hijacked or used to corrupt, control or change the behaviour of other processes
in the system.Many vulnerabilities that are associated with concurrent access to files, shared memory or shared
network resources fall undehis vulnerability, including resources accessed via stateless protocols such as HTTP
and remote file protocols.

8.8.2

CWE:

Cross references

15. External Control of System or Configuration Setting
642 External Control of Critical State Data
Burns A. and \&llings A., Language VulnerabilittdsS i Q& y 24 FT2NAHSG / 2y OdzZNNBy Oeé =

150

© ISQIEC2012 ¢ All rights reserve

N

© 00 N O O

10
11
12

13

14

15
16

17
18
19

20
21

22

23

24
25
26
27
28
29

30

Baseline Editiol2 TR 24772 WG 23/N @10

8.8.3 Mechanism of failure

Any time that a shared resource is open to general inspection, the resource can be monitored by a foreign proce:
to determine usage patternsinhing patterns, and access patterns to determine ways that a planned attack can
succeed. Such monitoring could be, but is not limited to:

1 Reading resource values to obtain information of value to the applications.

9 Monitoring access time and access tadeto determine when a resource can be accessed undetected by
other threads (for example, Tirraf-CheckTime-Of-Use attacks rely upon a d&=iminable amount of time
between the check on a resource and the use of the resource when the resource could biedniodif
bypass the check).

1 Monitoring a resource and modification patterns to help determine the protocols in use.

1 Monitoring access times and patterns to determine quiet times in the access to a resource that could be
used to find successful attack vectors

This monitoring can then be used to construct a successful attack, usually in a later attack.
Any time that a resource is open to general update, the attacker can plan an attack by performing experiments to

9 Discover how changes affect pattsrof usagetiming, and access
9 Discover how application threads detect and respond to forged values.

Any time that a shared resource is open to shared update by a thread, the resource can be changed in ways to
further an attack once it is initiated-or example n awell-knownattack, a process monitors a certain change to
a known file and then immediately replaces a virus free file with an infected file to bypass virus checking software

With careful planning, similar scenarios can result in the foreign proassmining a weakness of the attacked
process leading to an exploit consisting of anything up to and including arbitrary code execution.

8.8.4 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigéteeffects in the following ways.

1 Place all shared resources in memory regions accessible to only one process at a time.

9 Protect resources that must be visible with encryption or with checksums to detect unauthorized
modifications.

9 Protect access to sharedsources using permissions, access control, or obfuscation.

Have and enforce clear rules with respect to permissions to change shared resources.

9 Detect attempts to alter shared resources and take immediate action.

=

8 Such monitoring is almost always possible by a process executing with system privilege, but even small slips in actseaadontro
permissions let such spurces be seen from other (non system level) processes. Even the existence of the resource, its size, or its access
RIFIiSakiAYySa yR KA&Gl2NE 04dzOK +a aflad O00SaasSR GaySeo Oly 3AA

© ISTIEC2012¢ All rights reserved 151

N

©O© 00 N o O

10

11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

WG 23/N @10 Baseline Edition 2TR 24772

Annex A
(informative)
Vulnerability Ta xonomy and List

A.1General

This Technical Report is a catalog that will continue to evolve. For that reason, a scheme that is distinct-from sub
clause numbering has been adopted to identify the vulnerability descriptions. Each description has bewmuassig
an arbitrarily generated, unique threletter code. These codes should be used in preference tckuse

numbers when referencing descriptions because they will not change as additional descriptions are added to
future editions of this Technical Reqp. However, it is recognized that readers may need assistance in locating
descriptions of interest.

This annex provides a taxonomical hierarchy of vulnéitads, which users may find to belpful in locating
descriptions of interestA.2is a taxonmy of the programming language vulnerabilities described in Claasel
A.3is a taxonomy of the application vulnerabilities described in ClZuge4 lists the vulnerabilities in the
alphabetical order of their thre¢etter codes and provides a cressference to the relevant sublause.

A.2 Outline of Programming Language Vulnerabilities

A.21. Types
A.21.1. Representation
A.21.1.1. [IHN] Type System
A.2.1.1.2. [STR] Bit Representations
A.21.2. Floatingpoint
A.2.1.2.1 [PLF] Floatingoint Arithmetic
A.21.3. Enumerated Types
A.2.1.3.1. [CCB] Enumerator Issues
A.21.4. Integers
A.2.1.41. [A.C] Numeric Conversion Errors
A.21.5. Characters and strings
A.21.5.1 [CIMJString Termination
A.21.6. Arrays
A.2.1.61. HCB Buffer Boundary Violation (Bier Overflow)
A.2.1.62. [XYZ] Unchecked Array Indexing
A.2.1.63. [XYW] Unchecked Array Copying
A.21.7. Pointers
A.2.1.71. [HFC] Pointer Casting and Pointer Type Changes
A.2.1.7.2. [RVG] Pointer Arithmetic
A.2.1.73. [XYH] Null Pointer Dereference
A.2.1.7.4. [XYK] Dangling Reference to Heap
A.22. Type Conversions/Limits
A.22.1. [FIF] Arithmetic Wrapround Error
A.2.2.1 [PIK] Using Shift Operations for Multiplication and Division
A.22.2.[XZI] Sign Extension Error
A.23. Declarations and Definitits
A.23.1. [NAI] Choice of Clear Names
A.2.3.2. [WXQ] Dead store

152 © ISTIEC2012 ¢ All rights reserve

O oO~NOOTHA,WNPE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49

Baseline Editior2 TR 24772

A.23.3. [YZS] Unused Variable
A.23.4. [YOW] Identifier Name Reuse
A.23.5. [BJL] Namespace Issues
A.23.6. [LAVY Initialization of Variables
A.24. Operators/Expressions
A.24.1. [JCW] Perator Recedence/Order of Evaluation
A.24.2. [SAM] Sideffects and Order of Evaluation
A.24.3. [KQ\] Likely Incorrect Expression
A.24.4. [XYQ] Dead and Deactivated Code
A.25. Control Flow
A.25.1. Conditional Statements
A.2.51.1. [CLL] Switch Staents and Static Analysis
A.2.51.2. [EQ] Demarcation of Control Flow
A.25.2. Loops
A.2.52.1. [TEX] Loop Control Variables
A.2.5.2.2. [XZH] OHy-one Error
A.25.3. Subroutines (Functions, Procedures, Subprograms)
A.2.53.1.[EWD] Structured Programng
A.2.53.2. [CSJ] Passing Parameters and Return Values
A.2.53.3. [DCM] Dangling References to Stack Frames
A.2.53.4. [OTRBubprogram Signature Mismatch
A.2.5.3.5. [GDL] Recursion
A.2.536. [OYBIgnoredError Status and Unhandled Exceptions
A.25.4. Termination Strategy
A.2.54.1. [REU] Termination Strategy
A.26. MemoryModels
A.2.61. [AMV] Typédbreaking Reinterpretation of Data
A.2.62. [XYL] Memory Leak
A.27. Templates/Generics
A.27.1. [SYM] Templates and Generics
A.27.2. [RIP] Inheritarec
A.28. Libraries
A.2.8.1 [LRM] Extra Intrinsics
A.28.2 [TRJ] Argument Passing to Library Functions
A.2.8.3. [DJS] Intdanguage Calling
A.28.4. [NYY] Dynamicatinked Code and Sethodifying Code
A.28.5. [NSQ)] Library Signature
A.28.6. [HIW] Unaticipated Exceptions from Library Routines
A.29. Macros
A.29.1. [NMP] Preprocessor Directives
A.2.10. Compile/Run Time
A.2.10.1 [MXB] Provision of Inherently Unsafe Operations
A.2.10.2 [SKISuppression of Languadefined Rurnlime Checking

A.211. Larguage Specification Issues
A.211.1. [BRS] Obscure Language Features
A.211.2. [BQF] Unspecified Behaviour
A.211.3. [EWF] Undefined Behaviour
A.211.4 [FAB]mplementationdefined Behaviour
A.211.5 [MEM] Deprecated Language Features

© ISTIEC2012 ¢ All rights reserved

WG 23/N @10

WG 23/N @10

A.30utline of Appl ication Vulnerabilities

A.3.1 Desigrnissues

A.3.1.1 [BVQ] Unspecified Functionality

A.3.1.2 [KLK] Distinguished Values in Data Types
A.32. Environment

A.32.1. [XYN] Adherence to Least Privilege

A.32.2. [XYQO] Privilege Sandbox Issues

A.32.3. [XYS] Exuting or Loading Untrusted Code
A.3.3 Resource Management

A.3.31. Memory Management

A.3.31.1. [XZX] Memory Locking
A.3.31.2. [XZP] Resource Exhaustion

A.3.32. Input

A.3.3.2.1 [CBF] Unrestricted filepload

A.3.3.2.2. [HTS] Resource names

A.3.32.3. [RST] Injection

A.3.324. [XYT] Crossite Scripting

A.3.3.25. [XZQ] Unquoted Search Path or Element
A.3.3.2.6 [XZR] Improperly Verified Signature
A.3.32.7. [XZL] Discrepancy Information Leak

A.3.33. Output

A.3.33.1. [XZK] Sensitive Information Urared Before Use

A.3.34. Files

A.33.4.1. [EWR] Path Traversal

A.3.4. Concurrency
A.3.4.1 [CGA] Concurrengyctivation

A.3.4.2[CGT] ConcurrenayDirected termination
A.3.4.3[CGS] ConcurrengyPremature Termination
A.3.4.4[CGX] Concurrent Data Asse

A.3.4.59[CGY] Inadequately Secure Communication of Shared Resources

A.3.4.6 [CGMProtocal Lock Errors

A.4.4 Flaws in Security Functions
A.4.41. [XZS] Missing Required Cryptographic Step
A.4.42. Authentication

A.4.42.1. [XYM] Insufficiently ProteateCredentials
A.4.42.2. [XZN] Missing or Inconsistent Access Control
A.4.42.3. [XZO] Authentication Logic Error

A.4.42.4. [XYP] Hardoded Password

Baseline Edition 2TR 24772

A.4 Vulnerability List
Code Vulnerability Name Subclause
[AMV] | Type - breaking Reinterpretation of Data 6.40 88
[BJIL] Namespace Issues 6.23 59
[BQF] | Unspecified Behaviour 6.54 108
[BRS] | Obscure Language Features 6.53 106
[BVQ] | Unspecified Functionality 7.3 114
[CBF] | Unrestricted File Upload 7.10 122

154 © ISTIEC2012 ¢ All rights reserve

Baseline Editio2 TR 24772 WG 23/N @10
[CCB] | Enumerator Issues 6.6 34
[CGA] | Concurrency - Activation 8.3 141
[CGM] | Protocol Lock Errors 8.7 148
[CGS] | Concurrency - Premature Termination 8.6 146
[CGT] | Concurrency - Directed termination 8.4 143
[CGX] | Concurrent Data Access 8.5 144
[CGY] | Inadequately Secure Communication of Shared Resources 8.8 150
[CIM] | String Termination 6.8 38
[CLL] | Switch Statements and Static Analysis 6.29 70
[CSJ] | Passing Parameters and Return Values 6.34 76
[DCM] | Dangling References to Stack Frames 6.35 79
[DJS] | Inter -language Calling 6.46 97
[EQJ] | Demarcation of Control Flow 6.30 71
[EWD] | Structured Programming 6.33 75
[EWF] | Undefined Behaviour 6.55 109
[EWR] | Path Traversal 7.18 134
[FAB] | Implementation - defined Behaviour 6.56 111
[FIF] Arithmetic Wrap - around Error 6.16 49
[FLC] | Numeric Conv ersion Errors 6.7 36
[GDL] | Recursion 6.37 82
[HCB] | Buffer Boundary Violation (Buffer Overflow) 6.9 39
[HFC] | Pointer Casting and Pointer Type Changes 6.12 44
[HIW] | Unanticipated Exceptions from Library Routines 6.49 101
[HTS] | Resource Names 7.11 124
[IHN] Type System 6.3 28
[JCW] | Operator Precedence/Order of Evaluation 6.25 63
[KLK] | Distinguished Values in Data Types 7.4 115
[KOA] | Likely Incorrect Expression 6.27 66
[LAV] | Initializat ion of Variables 6.24 61
[LRM] | Extra Intrinsics 6.44 95
[MEM] | Deprecated Language Features 6.57 112
[MXB] | Suppression of Language - defined Run - time Checking 6.51 104
[NAI] Choice of Clear Names 6.19 53
[NMP] | Pre - processor Directives 6.50 103
[NSQ] | Library Signature 6.48 100
[NYY] | Dynamically - linked Code and Self - modifying Code 6.47 99
[OTR] | Subprogram Signature Mismatch 6.36 81
[OYB] | Ignored Error Status and Unhandled Exceptions 6.38 84
[PIK] Using Shift Operations for Multiplication and Division 6.17 51
[PLF] | Floating - point Arithmetic 6.5 32
[REU] | Termination Strategy 6.39 86
[RIP] Inh eritance 6.43 93
[RST] | Injection 7.12 125
[RVG] | Pointer Arithmetic 6.13 45
[SAM] | Side - effects and Order of Evaluation 6.26 64
[SKL] | Provision of Inherently Unsafe Operations 6.52 105
[STR] | Bit Representations 6.4 30
[SYM] | Templates and Generics 6.42 91
[TEX] | Loop Control Variab les 6.31 73
[TRJ] | Argument Passing to Library Functions 6.45 96
[WXQ)] | Dead Store 6.20 55
[XYH] | Null Pointer Dereference 6.14 46
[XYK] | Dangling Reference to Heap 6.15 a7
[XYL] | Memory Leak 6.41 90
© ISTIEC2012¢ All rights reserved 15E

WG 23/N @10 Baseline Edition 2TR 24772

[XYM] | Insufficiently Protected Credentials 7.20 137
[XYN] | Adherence to Least Privileg e 7.5 117
[XYQ] | Privilege Sandbox Issues 7.6 117
[XYP] | Hard - coded Password 7.23 140
[XYQ] | Dead and Deactivated Code 6.28 68
[XYS] | Executing or Loading Untrusted Code 7.7 119
[XYT] | Cross - site Scripting 7.13 128
[XYW] | Unchecked Array Copying 6.11 43
[XYZ] | Unchecked Array Index ing 6.10 41
[XZH] | Off - by- one Error 6.32 74
[XZI] Sign Extension Error 6.18 52
[XZK] | Sensitive Information Uncleared Before Use 7.17 133
[XZL] | Discrepancy Information Leak 7.16 132
[XZN] | Missing or Inconsistent Access Control 7.21 137
[XZO] | Authentication Logic Error 7.22 138
[XZP] | Resource Exhaustion 7.9 121
[XZQ] | Unquoted Search Path or Element 7.14 131
[XZR] | Improperly Verified Signature 7.15 131
[XZS] | Missing Required Cryp tographic Step 7.19 136
[XZX] | Memory Locking 7.8 120
[YOW] | Identifier Name Reuse 6.22 57
[YZS] | Unused Variable 6.21 56

156 © ISTIEC2012 ¢ All rights reserve

»

Baseline Editiol2 TR 24772 WG 23/N @10

Annex B
(informative)
Language Specific Vulnerability Template

Each languagspecific annex should have the following heading information and initial sections:

Annex <language>
(Informative)
Vulnerability descriptions for language <language>

<language>.1ldentification of standards

[This sukclause should list the relevant language standards and other documents that describe the langua
treated in the annex. It need not be simply a list of standattishould do whatever is required to describe the
language that is the baseline.]

<language>.2 General terminology and concepts

[This sukclause should provide an overview of general terminology and concepts that are utilized througho
annex.]

Every vulnerability description of Clause 6 of the main danmshould be addressed in the annex in the same
order even if there is simply a notation that it is not relevant to the language in quediiaah vulnerability
description should have the following format:

<language>.<x> <Vulnerability Name> [<3 lettag>]

<language>.<x>.0 Status, history, and bibliography

[Revision history. This clause will eventually be removed.]

<language>.<x>.1 Applicability to language

[This section describes what the language does or does not do in order to deal with the vilitygrab
<language>.<x>.2 Guidance to language users

[This section describes what the programmer or user should do regarding the vulnerability.]

In those cases where a vulnerability is simply not applicable to the language, the following format shosid be u

instead:

<language>.<x> <Vulnerability Name> [<3 letter tag>]

This vulnerability is not applicable to <language>.

© ISTIEC2012¢ All rights reserved 157

WG 23/N @10 Baseline Edition 2TR 24772

Following the final vulnerability description, there should be a singlectailse as follows:

<language>.<x> Implications for standardtion

[This section provides the opportunity to discuss changes anticipated for future versions of the language
specification.]

158 © ISTIEC2012 ¢ All rights reserve

©O© 00 N o O

10
11
12
13
14
15
16
17
18
19

20

21
22

23

24

25

26

27

28
29
30

31
32

Baseline Editiol2 TR 24772 WG 23/N @10

Annex C
(informative)
Vulnerability descriptions for the language Ada

C.1 Identification of standards and associated document ation

ISO/IEC 8652:199Bformation Technology Programming Language#\da.

ISO/IEC 8652:1995/COR.1:20Té&chnical Corrigendum to Information Technolqddrogramming Languages
Ada.

ISO/IEC 8652:1995/AMD2D07, Amendment to Information TechnologyProgramming Language#da.
ISO/IEC TR 15942:20@uidance for the Use of Ada in High Integrity Systems.

ISO/IEC TR 24718:20@5uide for the use of the Ada Ravenscar Profile in high integrity systems.

Lecture Notes on Computer Science 5920G ! R H o 4K Swi{ & ¥yAWH 3SY GKS {dF yRI
Barnes, Springer, 2008.

Ada 95 Quality and Style Guj&PE106L:CMC, version 02.01.01. Herndon, Virginia: Software Productivity
Consortium, 1992.

Ada Laguage Reference Manydlhe consolidated Ada Reference Manual, consisting of the international
standard (ISO/IEC 8652:199Bi)formation Technology Programming LanguagesAda, as updated by changes
from Technical Corrigendum(ISO/IEC 8652:1995:T2000), and Amendment 1 (ISO/IEC 8526:AMD1:2007).
IEEE 752008, IEEE Standard for Binary Floating Point Arithpri&tieE, 2008.

IEEE 854987, IEEE Standard for Raltidependent FloatindPoint Arithmetic IEEE, 1987

C.2 General terminology and concepts

Abnormal RepresentationThe representation of an object iscomplete or does not represe any valid value of
0KS 202S00Qa adzodeLlSo

Access object An object of an access type.

Accesdo-Subprogram A pointer to a subprogram (function or procedure).

Access type The pe for objects that designate (point to) other objects.
Access valueThe value of an access typevalue that is either null or designates (points at) another object.
Allocator. The Ada term for the construct that allocates storage ftbmheap or from a storage pool.

AtomicandVolatile Ada can force every access to an object to be an indivisible access to the entity in memory
instead of possibly partial, repeated manipulation of a local or register copy. In Ada, these propertipsdified
by pragmas.

Attribute: An Attribute is a characteristic of a declaration that can be queried by special syntax to return a value
corresponding to the requested attribute.

© ISTIEC2012¢ All rights reserved 15¢

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22983
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35451
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45001
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29575
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38828
http://www.adaic.com/standards/ada05.html

10

11
12

13
14
15

16
17
18
19

20
21

22
23

24

25
26
27

28

29
30

31
32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

Bit Ordering Ada allows use of the attribut®it Orderof a type to quenpor specify its bit ordering representation
(High_Order_FirsandLow_Order_First The default value is implementation defined and available at
System.Bit_Order

Bounded Errar An aror that need not be detected either prior to or during run time, butdt detected, then
the range of possible effects shall be bounded.

Case mtement A case statement provides multiple paths of execution dependent upon the value of the case
expression. Only one of alternative sequences of statements will be selected.

Case expression The case expression of a case statement is a discrete type.

Case choicesThe choices of a case statement must be of the same type as the type of the expression in the case
statement. All possible values of the case expression must leretby the case choices.

Compilation mit: The smallest Ada syntactic construct that may be submitted to the compiler. For typical file
based implementations, the content of a single Ada source file is usually a single compilation unit.

Configuration prgma A directive to the compiler that is used to selpattition-wide or systerrwide optiors.
Thepragma applies to alcompilationunits appearing in the compilation, unless there are none, in which case it
applies to all futurecompilationunits compiéd into the same environment.

Controlled type A type descended from the languadefined typeControlledor Limited_Controlled A

controlled type is a specialized type in Ada where an implementer can tightly control the initialization,
assignment, andrialization of objects of the type. This supports techniques such as reference counting, hidden
levels of indirection, reliable resource allocati@md so on

Dead store An assignment to a variable that is not used in subsequent instructions. Algahabis declared but
neither read nor written to in the program is an unused variable.

Default expressionan expression of the formal object type that may be used to initialize the formal object if an
actual object is not provided.

Discrete type An hteger type or an enumeration type.

Discriminant A parameter for a composite type. It can control, for example, the bounds of a component of the
type if the component is an array. A discriminant for a task type can be used to pass data to a taslkud the t
upon creation.

Endiannessthe programmer may specify the endianness of the representation through the useragma.

Enumeration Representation Claugeenumeration representation clause may be used to specify the internal
codes for enumerationtirals.

Enumeration TypeAn enumeration type is a discrete type defined by an enumeration of its values, which may be
named by identifiers or character literals. In Ada, the typaaracteandBooleanare enumeration typeslrhe

defining identifiers and efining character literals of an enumeration type must be distiflce predefined order
relations between values of the enumeration type follow the order of corresponding position numbers.

160 © ISTIEC2012 ¢ All rights reserve

10

11

12
13
14

15
16

17

18
19
20

21
22
23

24

25
26
27
28
29
30
31

32
33

34
35

Baseline Editiol2 TR 24772 WG 23/N @10

Erroneous executianThe unpredictable result arising from an errthat isnot bounded by the language, but
that, like abounded error need not be detected by the implementation either prior to or during run time.

Exception Represents a kind of exceptional situation. There is a set of predefined exceptions irpaAdkaige
Standard: Constraint_Error, Program_Error, Storage_EamnoiTasking_Erroyone of them is raised when a
languagedefined check fails.

Expanded nameA variable V inside subprogram S in package P can be named V, or P.S.V. The name V is callec
the direct namewhile the name P.S.V is called twgpanded name

Explicit ConversianThe Ada term explicit conversion is equivalent to the term cast in Section 6.3.3.

Fixedpoint types Realvalued types with a specified error bound (called the 'deifahe type) that provide
arithmetic operations carried out with fixed precision (rather than the relative precision of flopting types).

Generidformal subprogramA parameter to a generic package used to specify a subprogram or operator.

Hiding A ceclaration can béidden either from direct visibility, or from all visibility, within certain parts of its
scope. Wherdnidden from all visibilityit is not visible at all (neither usingdaect_namenor aselector_name
Wherehidden from direct visibity, only direct visibility is lost; visibility usingelector_names still possible.

Homograph Two declarations areomographsf they have the same name, and do not overload each other
according to the rules of the language.

Identifier: Identifieris the Ada term that corresponds to the term name.

Idempotent behaviar: The property of an operation that has the same effect whether applied just once or
multiple times. An example would be an operation that rounded a number up to the nearest evgerigeater
than or equal to its starting value.

Implementation defined Aspects of semantics of the language specify a set of possible effects; the
implementation may choose to implement any effect in the set. Implementations are required to documént the
behaviour in implementatiofefined situations.

Implicit ConversionThe Ada term implicit conversion is equivalent to the term coercion.

Ada uses a strong type system based on name equivalence rules. It distinguishes types, which embody
statically chekable equivalence rules, and subtypes, which associate dynamic properties withftypes,
example index ranges for array subtypes or value ranges for numeric subtypes. Subtypes are not types
and their values are implicitly convertible to all othebstpes of the same type. All subtype and type
conversions ensure by static or dynamic checks that the converted value is within the value range of the
target type or subtype. If a static check fails, then the program is rejected by the compiler. If aiclynam
check fails, then an exceptidonstraint_Errois raised.

To effect a transition of a value from one type to another, three kinds of conversions can be applied in
Ada:

a) Implicit conversionsthere are few situations in Ada that allow for implicineersions. An
example is the assignment of a value of a type to a polymorphic variable of an encompassing

© ISTIEC2012¢ All rights reserved 161

(6]

© 00 N O

10
11
12

13
14
15

16
17

18
19

20
21
22
23

24
25
26
27

28
29
30

31

32

33

34

35

WG 23/N @10 Baseline Edition 2TR 24772

class. In all cases where implicit conversions are permitted, neither static nor dynamic type safety
or application type semantics (see below) are amglered by the conversion.

b) Explicit conversionsarious explicit conversions between related types are allowed in Ada. All
such conversions ensure by static or dynamic rules that the converted value is a valid value of the
target type. Violations of qaitype properties cause an exception to be raised by the conversion.

c) Unchecked conversion€onversions that are obtained by instantiating the generic subprogram
Unchecked_Conversiare unsafe and enable all vulnerabilities mentioned in Section 6.3eas t
result of a breach in a strong type systddnchecked_Conversida occasionally needed to
interface with typeless data structurespr example hardware registers.

A guiding principle in Ada is that, with the exception of using instancdsidie&ed Conversionno
undefined semantics can arise from conversions and the converted value is a valid value of the target

type.

Modular type A modular type is an integer type with values in taage 0. modulus- 1. The modulus of a
modular type can bep to 2**N for N-bit word architectures. A modular type has wrappund semantics for
arithmetic operations, biwise "and" and "or" operations, and arithmetic and logical shift operations.

Obsolescent Feature#da has a number of features that have bekeclared to be obsolescent; this is equivalent
to the term deprecated. These are documented in Annex J of the Ada Reference Manual.

Operational and Representation AttributeBhe values of certain implementati@iependent characteristics can
be obtainedby querying the applicable attributes. Some attributes can be specified by the user; for example:

1 X'Alignment allows the alignment of objects on a storage unit boundary at an integral multiple of a
specified value.

1 X'Size denotes the size in bits of thepresentation of the object.

1 X'Component_Sizedenotes the size in bits of components of the array type X.

Overriding Indicatord L F 'y 2LISNI GA2Y A& YIEINJSR Fa a2O0SNNARAY 3¢
operation is incorrectly named or ¢hparameters are not as defined in the parent. Likewise, if an operation is

YEN]J SR Fa ay20 208SNNARAYy3IeES GKSYy GKS O2YLIAESNI gAff
types.

Partition A partition is a part of a program. Each partiticonsists of a set of library units. Each partition may run
in a separate address space, possibly on a separate computer. A program may contain just one partition. A
distributed program typically contains multiple partitions, which can execute concuyrentl

Pointery {ey2yeyYy F2N al 00Saa 2062S00d¢
Pragma A directive to the compiler.
PragmaAtomic Specifies that all reads and updates of an object are indivisible.

PragmaAtomic_Components Specifies that all reads and updates of an element of an areaydivisible.

Pragma Convention Specifies that an Ada entity should use the conventions of another language.

162 © ISTIEC2012 ¢ All rights reserve

(o]

10
11

12
13

14
15
16
17

18
19

20
21
22

23

24
25

26
27

28
29

30

31
32

33
34

Baseline Editiol2 TR 24772 WG 23/N @10

PragmaDetect Blocking A configuration pragma that specifies thatgdtentially blocking operations within a
protected operation shall beatected, resulting in th&rogram_Erroexception being raised.

PragmaDiscard NamesSpecifies thastorage used at rutime for the names of certain entities may be
reduced.

Pragma Export Specifies an Ada entity to be accessed by a foreign langumagealtowing an Ada subprogram to
be called from a foreign language, or an Ada object to be accessed from a foreign language.

Pragma Import Specifies an entity defined in a foreign language that may be accessed from an Ada program,
thus allowing a foreig-language subprogram to be called from Ada, or a foréaguguage variable to be accessed
from Ada.

PragmaNormalize ScalarsA configuration pragma that specifiggt an otherwise uninitialized scalar object is
set to a predictable value, but out ofiige if possible.

PragmaPack Specifies that storage minimization should be the main criterion when selecting the representation
of a composite type.

PragmaRestrictions Specifies that certain language features are not to be used in a given appli€ation.
example, thepragma Restrictions (No_Obsolescent_Featugshibits the use of any deprecated features. This
pragmais aconfiguration pragmehich means that all program units compiled into the library must obey the
restriction.

Pragma SuppressSyecifies that a rurtime check need not be performed because the programmer asserts it will
always succeed.

PragmdJnchecked UnionSpecifies an interface correspondence between a given discriminated type and some
C union. Theragma specifies that the asciated type shall be given a representation that leaves no space for its
discriminant(s).

PragmaVolatile Specifies that all reads and updates on a volatile objegpa@r®rmed directly to memory.

PragmaVolatile Components Specifies that all readand updates of an element of an array pesformed
directly to memory.

Range checkA runtime check that ensures the result of an operation is contained within the range of allowable
values for a given type or subtype, such as the check done on #ramg of a type conversion.

Record Representation Clausesovide a way to specify the layout of components within records, that is, their
order, position, and size.

Scalar TypeAscalar type comprises enumeration types, integer types, and real types.

Separate CompilationAda requires that calls on libraries are checked for invalid situations as if the called routine
were declared locally.

Storage PoolA named location in an Ada program where all of the objects of a single access type will be
allocated A storage pool can be sized exactly to the requirements of the application by allocating only what is

© ISTIEC2012¢ All rights reserved 163

10
11
12

13
14

15
16

17
18
19

20
21

22
23
24
25
26
27
28
29

30
31

32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

needed for all objects of a single type without using the centrally managed heap. Exceptions raised due to

memory failures in a storage pool will not\asely affect storage allocation from other storage pools or from the
heap. Storage pools for types whose values are of equal lemigtimot suffer from fragmentation.

The following Ada restrictions prevent the application from using any allocators:

pragma Restrictions(No_Allocatorsprevents the use of allocators.

pragma Restrictions(No_Local Allocatorsprevents the use of allocators after the main program has

commenced.

pragma Restrictions(No_Implicit Heap Allocationg)revents the use of allocaterthat would use the

heap, but permits allocations from storage pools.

pragma Restrictions(No_Unchecked Deallocatian#events allocated storage from being returned and hence

effectively enforces storage pool memory approaches or a completely statioaqipto access types. Storage

pools are not affected by this restriction as explicit routines to free memory for a storage pool can be created.

Static expression€Expressions with statically known operands that are computed with exact precision by the

compiler.

Storage Place Attribute$or a component of a record, the attributes (integ@gsition First_BitandLast_Bitare

used to specify the component position and size within the record.

Subtype declaration A construct that allows programmers to di@ a named entity that defines a possibly

restricted subset of values of an existing type or subtype, typically by imposing a constraint, such as specifying a

smaller range of values.

Task A taskepresents a separate thread of control that proceedsipehdently and concurrently between the

points where itinteractswith other tasks. An Ada program may be comprised of a collection of tasks.

Unsafe Programming. Y NB O23yAdGAz2zy 2F GKS 200lFaArzylt ySSR
operations, Ada provides clearly identified language features to do so. Examples include the generic
Unchecked_Conversidor unsafe type conversions éinchecked_Deallocatidior the deallocation of heap
objects regardless of the existence of survivinigrences to the object. If unsafe programming is employed in a
unit, then the unit needs to specify the respective generic unit in its context clause, thus identifying potentially
unsafe unitsSimilarly, there are ways to create a potentially unsafe dlpbanter to a local object, using the
Unchecked_Accesattribute. A restriction pragma may be used to disallow usddrafhecked AccessThe

SUPPRES®ragma allows an implementation to omit certain rtime checks.

2

Userdefined floatingpoint types Types declared by the programmer that allow specification of digits of precision

and optionally a range of values.

Userdefined scalar typesTypes declared by the programmer for defining ordered sets of values of various kinds,

namely integer, enumeratioriloating-point, and fixedpoint types. The typing rules of the language prevent

intermixing of objects and values of distinct types.

164

© ISQIEC2012 ¢ All rights reserve

~

a

10

11

12
13
14
15
16
17
18

19

20

21
22
23

24
25

26

27

28
29
30
31
32
33
34
35

Baseline Editiol2 TR 24772 WG 23/N @10

C.3Type System [IHN]

C3.1 Applicability to language

Implicit conversions cause no application vulnerability, as longsagdting exceptions are properly handled.
Assignment between types cannot be performed except by using an explicit conversion.

Failure to apply correct conversion factors when explicitly converting among types for different units will result in
applicationfailures due to incorrect values.

Failure to handle the exceptions raised by failed checks of dynamic subtype properties cause systems, threads o
components to halt unexpectedly.

Unchecked conversions circumvent the type system and therefore can caspedified behaviour (se€40
[AMV]).

C.3.2 Guidance to language users

1 The predefinedV¥alid attribute for a given subtype may be applied to any value to ascertain if the value is
a valid value of the subtype. This is especially useful when interfacingypi-less systems or after
Unchecked_Conversion

1 A conceivable measure to prevent incorrect unit conversions is to restrict explicit conversions to the
bodies of useprovided conversion functions that are then used as the only means to effect thetioansi
between unit systems. These bodies are to be critically reviewed for proper conversion factors.

1 Exceptions raised by type and subtype conversions shall be handled.

C.4Bit Representation [STR]

C4.1 Applicability to language

In general, the type sysin of Ada protects against the vulnerabilities outlined in Section 6.4. However, the use of
Unchecked_Conversigralling foreign language routines, and unsafe manipulation of address representations
voids these guarantees.

The vulnerabilities caused byelinherent conceptual complexity of bit level programming are as described in
Section 6.4.

C4.2 Guidance to language users
The vulnerabilities associated with the complexity ofleitel programming can be mitigated by:

1 The use of record and array typegth the appropriate representation specifications added so that the
objects are accessed by their logical structure rather than their physical representation. These
representation specifications may address: order, position, and size of data componeirfislés.

1 The use of pragma Atomic apdagma Atomic_Componenti ensure that all updates to objects and
components happen atomically.

1 The use of pragma Volatile apdagma Volatile_Component® notify the compiler that objects and
components must beead immediately before use as other devices or systems may be updating them
between accesses of the program.

© ISTIEC2012¢ All rights reserved 16E

DO W NP

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

32

33
34
35
36

37
38

WG 23/N @10 Baseline Edition 2TR 24772

1 The default object layout chosen by the compiler may be queried by the programmer to determine the
expected behaviour of the final representation.

For the traditional approach to blevel programming, Ada provides modular types and literal representations in
arbitrary base from 2 to 16 to deal with numeric entities and correct handling of the sign bit. The pregmia
Packon arrays of Booleangqvides a typesafe way of manipulating bit strings and eliminates the use of error
prone arithmetic operations.

C5 Floating -point Arithmetic [PLF]

C5.1 Applicability to language

Ada specifies adherence to the IEEE Floating Point StandiaEE 54-2008 IEEB54-1987).

The vulnerability in Ada is as described in Sectiér26.
C5.2 Guidance to language users

1 Rather than using predefined types, suctFisatandLong_Float whose precision may vary according to
the target system, declare floatingpint types that specify the required precisidiol example digits 10).
Additionally, specifying ranges of a floating point type enables constraint checks which prevents the
propagation of infinities and NaNs.

1 Avoid comparing floatingoint values for equigty. Instead, use comparisons that account for the
approximate results of computation€onsult a numeric analyst when appropriate.

1 Make use of static arithmetic expressions and static constant declarations when possible, since static
expressions in Adar@ computed at compile time with exact precision.

1 Use Ada's standardized numeric librarits €xample Generic_Elementary_Functions) for common
mathematical operations (trigopnometric operations, logarithmsd others.

1 Use an Ada implementatiainat supports Annex G (Numerics) of the Ada standard, and employ the
"strict mode" of that Annex in cases where additional accuracy requirements must be met by floating
point arithmetic and the operations of predefined numerics packages, as defined arehtged by the
Annex.

1 Avoid direct manipulation of bit fields of floatifapint values, since such operations are generally target
specific and erraprone. Instead, make use of Ada's predefined floafiioint attributes guch as
'‘Exponent).

1 In casesvhere absolute precision is needed, consider replacement of flogioigt types and operations
with fixed-point types and operations.

C6 Enumerator Issues [CCB]

C6.1 Applicability to language

Enumeration representation specification may be used tac#penondefault representations of an enumeration
type, for example when interfacing with external systems. All of the values in the enumeration type must be
defined in the enumeration representation specification. The numeric values of the representatigtrpreserve
the original order. For example:

type 10_Typesis (Null_Op, Open, Close, Read, Write, Sync);
for 10_Typesuse(Null_Op => 0, Open => 1, Close => 2,

166 © ISTIEC2012 ¢ All rights reserve

© 00 NO Ok WDN =

=
o

11

12
13
14

15

16

17
18

19

20
21
22
23
24
25

26

27

28
29
30
31
32
33

34

35
36

Baseline Editiol2 TR 24772 WG 23/N @10

Read => 4, Write => 8, Sync => 16);

An array may be indexed by such a typda does not gescribe the implementation model for arrays indexed by

an enumeratiortype with non-contiguous values. Two options exist: EitieK S I NNJ & A a4 NBLINBa
and indexed by the values of the enumeration type, or the array is represeatetijuotsly and indexed by the
position of the enumeration valueather than the value itselin the former case, thgulnerability described in

6.6 exists only if unsafe programming is appltechccess the arragr its component®utside the protection of

the type system. Within the type system, the semantics are well defined anddadezulnerability of unexpected

but welldefined program behaviour upon extending an enumeration type exist in Ada. In particular, subranges or
others choices in aggregates andseastatements are susceptible to unintentionally capturing newly added
enumeration values.

C6.2 Guidance to language users
Forcasestatements and aggregates, do not use titberschoice.

Forcasestatements and aggregates, mistrust subranges as chaifter enumeration literals have been
added anywhere but the beginning or the end of the enumeration type definition

= =

C7 Numeric Conversion Errors [FLC]

C7.1 Applicability to language

Ada does not permit implicit conversions between different numenpesy hence cases of implicit loss of data
due to truncation cannot occur as they can in languages that allow type coercion between types of different sizes

In the case of explicit conversiosja language rules prevent numeric conversion errors, asisilo

1 Range bound checks are applied, so no truncation can occur, and an erogilitioe generated if the
operand of the conversion exceeds the boundshe target type or subtype.

1 Ada permits the definition of subtypes of existing types that can impose a restricted range of values, and
implicit conversions can occur for values dfatent subtypes belonging to the same type, but such
conversions still involve range checks that prevent any loss of data or violation ofuhd$of the target
subtype.

Precision is lost only on explicit conversion from a real type to an integeotypeeal type of less precision.
C7.2 Guidance to language users

1 Use Ada's capabilities for usdefined scalar types and subtypes to avoid accidental mixing of
logically incompatible value sets.

1 Use range checks on conversions involving scalar types atypsslio prevent generation of invalid
data.

1 Use static analysis tools during program development to verify that conversions cannot violate the
range of their target.

C8 String Termination [CIM]

With the exception of unsafe programmiligeeC2), this vuherability is not applicable to Ada agings in Ada
are not delimited by a termination character. Ada programs that interface to languages that usermitated

© ISTIEC2012¢ All rights reserved 167

10

11
12
13

14

15
16
17
18

19

20
21
22
23
24

25

26

27
28
29
30

31
32
33

WG 23/N @10 Baseline Edition 2TR 24772

strings and manipulate such strings directly should apply the vulnerability mitigatioamreended for that
language.

C9 Buffer Boundary Violation (Buffer Overflow) [HCB]

With the exception of unsafe programming (8€8), this vulnerability is not applicable to Adatais vulnerability
can only happen as a consequence of unchecked arraximgl or unchecked array copying ($220 [XYZ] and
C11 [XYW)).

C10 Unchecked Array Indexing [XYZ]

C10.1 Applicability to language

All array indexing is checked automatically in Ada, and raises an exception when indexes are out of bounds. This is
cheded in all cases of indexing, including when arrays are passed to subprograms.

An explicit suppression of the checks can be requested by ysagia Suppressin which case the vulnerability
would apply; however, such suppression is easily detectedgandrally reserved for tight timeritical loops,
even in production code.

C10.2 Guidance to language users

1 Do not suppress the checks provided by the language.

1 Use Ada's support for wholarray operations, such as for assignment and comparison, plusgajgs
for whole-array initialization, to reduce the use of indexing.

1 Write explicit bounds tests to prevent exceptions for indexing out of bounds.

Cl1l1 Unchecked Array Copying [XYW]

With the exception of unsafe programming (3€8), this vulnerability is1ot applicable to Ada a&da allows

arrays to be copied by simple assignment'{). The rules of the language ensure that no overflow can happen;
instead, the exceptioConstraint_Errofs raised if the target of the assignment is not able to containvidae
assigned to it. Since array copy is provided by the language, Ada does not provide unsafe functions to copy
structures by address and length.

Cl1l2 Pointer Casting and Pointer Type Changes [HFC]

C12.1 Applicability to language

The mechanisms avdilke in Ada to alter the type of a pointer value are unchecked type conversions and type
conversions involving pointer types derived from a common root type. In addition, uses of the unchecked address
taking capabilities can create pointer types that misesent the true type of the designated entity (see Section
13.10 of the Ada Language Reference Manual).

The vulnerabilities described in Section 6.12 exist in Ada only if unchecked type conversions or unsafe taking of
addresses are applied (see Secti®?). Other permitted type conversions can never misrepresent the type of the
designated entity.

168 © ISTIEC2012 ¢ All rights reserve

10

11
12
13

14

15

16
17
18

19
20

21
22

23

24
25
26

27

28
29
30

Baseline Editiol2 TR 24772 WG 23/N @10

Checked type conversions that affect the application semantics adversely are possible.

C12.2 Guidance to language users

9 This vulnerability can be avoided in Aganot using the features explicitly identified as unsafe.
1 Used A c owhishgs always type safe.

C13 Pointer Arithmetic [RVG]

With the exception of unsafe programming (S€8), this vulnerability is not applicable to Ada Ada does not
allow pointer aithmetic.

C14 Null Pointer Dereference [XYH]

In Ada, this vulnerability does not exist, since compitee or runitime checks ensure that naull value can be
dereferenced.

Ada provides an optional qualification on access types that specifies and entbat objects of such types
cannot have a null value. Nanllness is enforced by rules that statically prohibit the assignment of eitinikr
or values from sources not guaranteed to be fraiil.

C15 Dangling Reference to Heap [XYK]

C15.1 Applicabili ty to language

Use ofunchecked_Deallocatioran cause dangling references to the heap. The vulnerabilities described in 6.15

exist in Ada, when this feature is used, sitktechecked_Deallocatiomay be applied even though there are
outstanding reference® the deallocated object.

Ada provides a model in which whole collections of halipcated objects can be deallocated safely,
automatically and collectively when the scope of the root access type ends.

For global access types, allocated objects canlomigeallocated through an instantiation of the generic
procedureUnchecked_Deallocation

C15.2 Guidance to language users

9 Use local access types where possible.
1 Do not usdJnchecked_Deallocation
1 Use Controlled types and reference counting.

C16 Arithme tic Wrap -around Error [FIF]

With the exception of unsafe programming (S€8), this vulnerability is not applicable to Ada as weaippund

arithmetic in Ada is limited to modular types. Arithmetic operations on such types use modulo arithmetic, and

thus nosuch operation can create an invalid value of the type.

© ISTIEC2012¢ All rights reserved 16¢

10

11

12
13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

36
37

WG 23/N @10 Baseline Edition 2TR 24772

For nonmodular arithmetic, Ada raises the predefined except@onstraint_Errowhenever a wragaround
occurs but, implementations are allowed to refrain from doing so when a correct final valb&ised. In Ada
there is no confusion between logical and arithmetic shifts.

C17 Using Shift Operations for Multiplication and Division [PIK]

With the exception of unsafe programming (9€8), this vulnerability is not applicable to Ada as shift operai
in Ada are limited to the modular types declared in the standard packdaggaceswhich are not signed entities.

C18 Sign Extension Error [XZI]

With the exception of unsafe programming (3€8), this vulnerability is not applicable to Ada as Alibes not,
explicitly or implicitly, allow unsigned extension operations to apply to signed entities evetisa.

C19 Choice of Clear Names [NAI]

C19.1 Applicability to language

There are two possible issues: the use of the identical name for differapbses (overloading) and the use of
similar names for different purposes.

This vulnerability does not address overloading, which is covered in SE&&iyOW
The risk of confusion by the use of similar names might occur through:

1 Mixed casingAda treats upper and lower case letters in names as identical. Thus no confusion can arise
through an attempt to use Item and ITEM as distinct identifiers with different meanings.

1 Underscores and period#da permits single underscores in identifiers and theysaeificant. Thus
BigDogandBig_Dogare different identifiers. But multiple underscores (which might be confused with a
single underscore) are forbidden, thBgy__ Dogis forbidden. Leading and trailing underscores are also
forbidden. Periods are not pmnitted in identifiers at all.

9 Singular/plural formsAda does permit the use of identifiers which differ solely in this manner such as
ltemandItems However, the user might use the identifier ltem for a single objecttgpa Tand the
identifier temsfor an object denoting an array of items thatisdfy pe ar r alhe ugedofemo f T
where Iltemswas intended or vice versa will be detected by the compiler because of the type violation
and the program rejected so no vulnerability would arise.

1 International character setsAda compilers strictly conform to the appropriate international standard for
character sets.

91 Identifier length All characters in an identifier in Ada are significant. Tiurgy_ IdentifierAand
Long_ldentifierBare always differentAn identifier cannot be split over the end of a line. The only
restriction on the length of an identifier is that enforced by the line length and this is guaranteed by the
language standard to be no less than 200.

Ada permits the use of names suchX¥gs<X, andXXX (which might all be declared as integers) and a
programmer could easily, by mistake, wrKX where X (or XXX) was intended. Ada does not attempt to catch
such errors.

The use of the wrong name will typically result in a failure to compileosaimerability will arise. But, if the
wrong nhame has the same type as the intended name, then an incorrect executable program will be generated.

170 © ISTIEC2012 ¢ All rights reserve

AW

10
11

12

13
14
15

16

17
18

19

20

21
22

23

24
25
26
27
28

29

30

31
32

Baseline Editiol2 TR 24772 WG 23/N @10

C19.2 Guidance to language users

This vulnerability can be avoided or mitigated in Ada in the followingsway

1 Avoid the use of similar names to denote different objects of the same type.
1 Adopt a project convention for dealing with similar names
1 See the Ada Quality and Style Guide.

C20 Dead store [WXQ]

C20.1 Applicability to language

This vulnerability existin Ada as described in section 6.20, with the exception that in Ada if a variable is read by a
different thread (task) than the thread that wrote a value to the variable it is not a dead store. Simply marking a
variable as beinyfolatile is usually condiered to be too error prone for intethread (task) communication by the

Ada community, and Ada has numerous facilities for safer inter theeatmunication.

Ada compilers do exist that detect and generate compiler warnings for dead stores.

The error in 620.3 that the planned reader misspells the name of the store is possible but highly unlikely in Ada
since all objects must be declared and typed and the existence of two objects with almost identical names and
compatible types (for assignment) in the sasmpe would be readily detectable.

C20.2 Guidance to Language Users

1 Use Ada compilers that detect and generate compiler warnings for unused variables or use static analysis
tools to detect such problems.

C21 Unused Variable [YZS]

C21.1 Applicability to language

This vulnerability exists in Ada as described in section 6.21, although Ada compilers do exist that detect and
generate compiler warnings for unused variables.
C21.2 Guidance to language users

1 Do not declare variables of the same type with samilames. Use distinctive identifiers and the strong
typing of Ada (for example through declaring specific types suéligagCounters range0 .. 1000rather
than justPig: Integer) to reduce the number of variables of the same type.

1 Use Ada compilerdiit detect and generate compiler warnings for unused variables

9 Use static analysis tools to detes¢ad stores

C22 Identifier Name Reuse [YOW]

C22.1 Applicability to language

Ada is a language that permits local scope, and names within nested s@opbile identical names declared in
an outer scope. As such it is susceptible to the vulnerability. For subprograms and other overloaded entities the

© ISTIEC2012¢ All rights reserved 171

© 00 (o]

10

11

12
13
14
15

16

17

18
19

20
21

22
23
24
25
26

27

28
29

30
31
32

WG 23/N @10 Baseline Edition 2TR 24772

problem is reduced by the fact that hiding also takes the signatures of the entities into accoutiesEyvith
different signatures, therefore, do not hide each other.

Name collisions with keywords cannot happen in Ada because keywords are reserved.

The mechanism of failure identified in section 6.22.3 regarding the declaration edmqne identifiersm the
same scope cannot occur in Ada because all characters in an identifier are significant.

C22.2 Guidance to language users

1 Useexpanded namewhenever confusion may arise

1 Use Ada compilers that generate compile time warnings for declarations in $ecopes that hle
declarations in outer scopes.

1 Use static analysis tools that detect the same problem.

C23 Namespace Issues [BJL]

This vulnerability is not applicable to Ada because Ada does not attempt to disambiguate conflicting names
imported from diferent packages. Instead, use of a name with conflicting imported declarations causes a compile
time error. The programmer can disambiguate the name usage by using a fully qualified name that identifies the
exporting package.

C24 Initialization of Variab les [LAV]

C24.1 Applicability to language

As inmany languages, it is possible in Ada to make the mistake of using the value of an uninitialized variable.
However, as described below, Ada prevents some of the most harmful possible effects of usingehe val

The vulnerability does not exist for pointer variables (or constants). Pointer variables are initialized to null by
default, and every dereference of a pointer is checked foulavalue.

The checks mandated by the type system apply to the use aftiatized variables as well. Use of an-aft

bounds value in relevant contexts causes an exception, regardless of the origin of the faulty value. (See OYB
regarding exception handling.) Thus, the only remaining vulnerability is the potential use dtfyebfaisubtype
conformant value of an uninitialized variable, since it is technically indistinguishable from a value legitimately
computed by the application.

For record types, default initializations may be specified as part of the type definition.

Forcontrolled types (those descended from the languagéined type Controlled or Limited_Controlled), the
user may also specify an Initialize procedure which is invoked on all defialtized objects of the type.

ThepragmaNormalize_Scalars can be ugedensure that scalar variables are always initialized by the compiler in
a repeatable fashion. Thagmais designed to initialize variables to an eftrange value if there is one, to
avoid hiding errors.

172 © ISTIEC2012 ¢ All rights reserve

17

18

19
20

21
22
23
24
25

26

27

28

29

30
31
32

33
34
35

Baseline Editiol2 TR 24772 WG 23/N @10

Lastly, the user can query the validity ofla @Sy @I f dz§d ¢ KS SELINBaaAzy - Qxl
variable X conforms to the subtype of X and false otherwise. Thus, the user can protect against the usd-of out
bounds uninitialized or otherwise corrupted scalar values.

C24.2 Guidance to language users
This vulnerability can be avoided or mitigated in Ada in the following ways:

9 If the compiler has a mode that detects use before initialization, then this mode should be enabled and
any such warnings should be treated as errors.
1 Where appropriate, explicit initializations or default initializations can be specified.
1 The pragma Normalize_Scalars can be used to causefoahge default initializations for scalar
variables.
T ¢KS WxI AR | G0N O dzii $f-radgeyales Sausdziibg tRe useof uhimtidlifadl A T & 2 d
variables, without incurring the raising of an exception.
/I 2YY2y | ROAOS GKI{G akKz2dzZz R 6S I @2 A RS RInithkizingiaariade With2 NJY
an inappropriate default value such aga@ean result in hiding underlying problems, because the compiler or
other static analysis tools will then be unable to detect that the variable has been used prior to receiving a
correctly computed value.

C25 Operator Precedence/Order of Evaluation [JCW]

C25.1 Applicability to language

Since this vulnerability is about "incorrect beliefs" of programmers, there is no way to establish a limit to how far
incorrect beliefs can go. However, Ada is less susceptible to that vulnerability than many other émgirace

1 Ada only has six levels of precedence and associativity is closer to common expectations. For example, &
expression liké& = B or C = Dwill be parsed as expecteds(A = B) or (C = D).

1 Mixed logical operators are not allowed without pareesesfor example "A or B or C' is valid, as well
as 'A and B and C but "A and B or C is not (must write "(A and B) or C" or "A and (B or C)".

1 Assignment is not an operator in Ada.

C25.2 Guidance to language users

The general mitigation measurean be applied to Ada like any other language.

C26 Side-effects and Order of Evaluation [SAM]

C26.1 Applicability to language

There are no operators in Ada with direct side effects on their operands using the lardef@ged operations,
especially nothe increment and decrement operation. Ada does not permit multiple assignments in a single
expression or statement.

There is the possibility though to have side effects through function calls in expressions where the function
modifies globally visible vables. Although functions only havie™ parameters, meaning that they are not
allowed to modify the value of their parameters, they may modify the value of global variables. Operators in Ada

© ISTIEC2012¢ All rights reserved 173

N

o O AW

(o]

10
11

12

13

14
15
16

17
18

19
20

21

22

23

24
25
26
27
28

29
30
31

32
33
34

WG 23/N @10 Baseline Edition 2TR 24772

are functions, so, when defined by the user, although they cammify their own operands, they may modify
global state and therefore have side effects.

Ada allows the implementation to choose the order of evaluation of expressions with operands of the same
precedence level, the order of association is-tefright. The operands of a binary operation are also evaluated
in an arbitrary order, as happens for the parameters of any function call. In the case -afefiserd operators

with side effects, this implementation dependency can cause unpredictability of thesffiects.

C26.2 Guidance to language users

1 Make use of one or more programming guidelines which prohibit functions that modify global state, and
can be enforced by static analysis.

1 Keep expressions simple. Complicated code is prone to error and difficukintain.

1 Always use brackets to indicate order of evaluation of operators of the same precedence level.

C27 Likely Incorrect Expression [KOA]

C27.1 Applicability to language

An instance of this vulnerability consists of two syntactically similastcucts such that the inadvertent
substitution of one for the other may result in a program which is accepted by the compiler but does not reflect
the intent of the author.

The examples given in 6.27 are not problems in Ada because of Ada's strongatygipgcause an assignment is
not an expression in Ada.

In Ada, a type conversion and a qualified expression are syntactically similar, differing only in the presence or
absence of a single character:

Type_Name (Expressior) a type conversion
VS.
Type_Name'(Expression) a qualified expression

Typically, the inadvertent substitution of one for the other results in either a semantically incorrect program
which is rejected by the compiler or in a program which behaves in the same way as if the intendedat had
been written. In the case of a constrained array subtype, the two constructs differ in their treatment of sliding
(conversion of an array value with bounds 100 .. 103 to a subtype with bounds 200 .. 203 will succeed;
gualification will fail aun-time check).

Similarly, a timed entry call and a conditional entry call with an-péséthat happens to begin with delay
statement differ only in the use oklsée' vs. 'or" (or even then abort" in the case of asynchronous_select
statement).

Prabably the most common correctness problem resulting from the use of one kind of expression where a
syntactically similar expression should have been used has to do with the use etistwittvs. norshort-circuit
Booleanvalued operationsf¢r example "and then" and "or elsé' vs. '‘and" and 'or"), as in

174 © ISTIEC2012 ¢ All rights reserve

=

0o ~NOo O b~

10

11
12

13

14
15
16
17

18
19
20
21

22
23

24

25

26
27
28
29
30
31
32
33

Baseline Editiol2 TR 24772 WG 23/N @10

if (Ptr /=null) and (Ptr.all.Count > Ojhen ... end if;

-- should have usedihd then' to avoid dereferencing null

C27.2 Guidance to language users

1 Compilers and other static analysis tools caredesome cases (such as the preceding example).

1 Developers may also choose to use skmrtuit forms by default (errors resulting from the incorrect use
of shortcircuit forms are much less common), but this makes it more difficult for the author to &xpre
the distinction between the cases where shaitcuited evaluation is known to be needed (either for
correctness or for performance) and those where it is not.

C28 Dead and Deactivated Code [XYQ)]

C28.1 Applicability to language

Ada allows the usual sioces of dead code (described in 6.28) that are common to most conventional
programming languages.

C28.2 Guidance to language users

Implementation specific mechanisms may be provided to support the elimination of dead code. In some cases,
pragmas such afestrictionsSuppressor Discard_Namemay be used to inform the compiler that some code
whose generation would normally be required for certain constructs would be dead because of properties of the
overall system, and that therefore the code need notgemerated. For example, given the following:

packagePkgis
type Enumis (Aaa, Bbb, Ccc);
pragma Discard_Names(Enum);
end Pkg;

If Pkg.Enum'iImageand related attributesfor example Value, Wide_Imaggof the type are never used, and if the
implemertation normally builds a table, then theragma allows the elimination of the table.

C29 Switch Statements and Static Analysis [CLL]

C29.1 Applicability to language

With the exception of unsafe programming (388) and the use of default caseis vuherability is not

applicable to Ada as Ada ensures that a case statement provides exactly one alternative for each value of the
expression's subtypeThis restriction is enforced at compile time. Tdikers clause may be used as the last
choice of a casstatement to capture any remaining values of the case expression type that are not covered by
the preceding case choiceH.the value of the expression is outside of the range of this subfigneekample due

to an uninitialized variable), then thresulting behaviour is wetlefined (Constraint_Error is raised). Control does
not flow from one alternative to the next. Upon reaching the end of an alternative, control is transferred to the
end of thecasestatement.

© ISTIEC2012¢ All rights reserved 17E

O OB~ WDN P

11

12
13
14
15

16

17
18
19

20

21

22
23
24
25
26

27
28
29
30

31
32

WG 23/N @10 Baseline Edition 2TR 24772

The remaining vulnerability is &l unexpected values are captured by thihers clause or a subrange as case
choice. For example, when the range of the type Character was extended from 128 characters to the 256
characters in the Latith character type, anthers clause for aasestatement with a Character type case
expression originally written to capture cases associated with the 128 characters type now captures the 128
additional cases introduced by the extension of the type Character. Some of the new characters may have
needed to becovered by the existing case choicgsew case choices

C29.2 Guidance to language users

1 Forcasestatements and aggregates, avoid the use ofalieers choice.
9 Forcasestatements and aggregates, mistrust subranges as choices after enumeratiols litave been
added anywhere but the beginning or the end of the enumeration type definRion.

C30 Demarcation of Control Flow [EQJ]

This vulnerability is not applicable to Ada as the Ada syntax ibescseveral types of compound statements that
are associated with control flow includiifgstatements Joop statements casestatements selectstatements, and
extendedreturn statements. Each of these forms of compound statements require unique syraariarks the
end of the compound statement.

C31 Loop Control Variables [TEX]

With the exception of unsafe programming (888), this vulnerability is not applicable to Ada as Ada defines a
for loop where the number of iterations is controlled by a loogntrol variable (called a loop parameter). This
value has a constant view and cannot be updated within the sequence of statements of the body of the loop.

C32 Off-by-one Error [XZH]

C32.1 Applicability to language

Confusion between the need for < and <= or > and >=in a test.
Afor loop in Ada does not require the programmer to specify a conditional test for loop termination.
Instead, the starting and ending value of the loop are specified which eliminates this sourcéwpbat
errors. Awhile loop however, lets the programmer specify the loop termination expression, which could
be susceptible to an offy-one error.

Confusion as to the index range of an algorithm.
Although there are language defined attributes to symbolically reference the startaesharalues for a
loop iteration, the language does allow the use of explicit values and loop termination tests-@fé
errors can result in these circumstances.

Care should be taken when using thengthattribute in the loop termination expressionh&
expression should generally be relative to thRestvalue.

9 This case is somewhat specialized isimportant, since enumerations are the one case where subrangedadan the user.

176 © ISTIEC2012 ¢ All rights reserve

=

10
11

12

13

14
15

16

17

18
19
20

21

22

23
24
25

26

27

28

29

30
31

Baseline Editiol2 TR 24772 WG 23/N @10

The strong typing of Ada eliminates the potential for buffer overflow associated with this vulnerability. If
the error is not statically caught at compile time, then a-time check generatean exception if an
attempt is made to access an element outside the bounds of an array.

Failing to allow for storage of a sentinel value.
Ada does not use sentinel values to terminate arrays. There is no need to account for the storage of a
sentinel valuetherefore this particular vulnerability concern does not apply to Ada.

C32.2 Guidance to language users

1 Whenever possible, for loop should be used instead ofvéhile loop.

1 Whenever possible, th&irst, 'Last and'Rangeattributes should be used fdoop termination. If the
‘Lengthattribute must be used, then extra care should be taken to ensure that the length expression
considers the starting index value for the array.

C33 Structured Programming [EWD]
C33.1 Applicability to language

Ada programgan exhibit many of the vulnerabilities noted@r83 leaving doop at an arbitrary point, local
jumps @oto), and multiple exit points from subprograms.

Ada however does not suffer from ndacal jumps and multiple entries to subprogram
C33.2 Guidance to language users

Avoid the use ofjoto, loop exitstatements return statements inprocedures and more than onesturn
statement in aunction If not following this guidance caused the function code to be cleasdrort of
appropriaterestructuringg then multiple exit points should be used.

C34 Passing Parameters and Return Values [CSJ]

C34.1 Applicability to language

Ada employs the mechanisnfei example modesin, out andin out) that are recommended in Section 6.34.
These mde definitions are not optional, moda being the default. The remaining vulnerability is aliasing when a
large object is passed by reference.

C34.2 Guidance to language users

1 Follow avoidance advice in Section 6.34.
C35 Dangling References to Stack Frames [DCM]
C35.1 Applicability to language

In Ada, the attributéAddressyields a value of some systespecific type that is not equivalent to a pointer. The
attribute 'Accessprovides an access value (what other languages call a poiAyesses andccess values are

© ISTIEC2012¢ All rights reserved 177

N o ok wN

(o]

10

11

12
13
14
15
16
17
18

19

20

21
22
23

24
25
26
27
28
29

30
31
32

33
34
35
36

WG 23/N @10 Baseline Edition 2TR 24772

not automatically convertible, although a predefined set of generic functions can be used to convert one into the
other. Access values are typed, that is to,$hgy can only designate objects of a particular type or class of types.

Asin other languages, it is possible to apply tAddressattribute to a local variable, and to make use of the
resulting value outside of the lifetime of the variable. Howeddresss very rarely used in this fashion in Ada.
Most commonly, programs @sAccesdo provide pointers to objects and subprograms, and the language

enforces accessibility checks whenever code attempts to use this attribute to provide access to a local object

outside of its scope. These accessibility checks eliminate the gingsibdangling references.

As for all other languagdefined checks, accessibility checks can be disabled over any portion of a program by

using theSupprespragma. The attributeUnchecked Acceswroduces values that are exempt from accessibility

checks

C35.2 Guidance to language users

Only useéAddressattribute on static objectsf¢r example a register address).

1
1 Do not useAddresgo provide indirect untyped access to an object.

1 Do not use conversion betweekddressand access types.

i Use acess types in all circumstances when indirect access is needed.
9 Do not suppress accessibilithiecks.

9 Avoid use of the attributéJnchecked_Access

1

1'aS W oO0Saa FGUNROGdzGS Ay LINBFSNBYyOS (2 !

C36 Subprogram Signature Mismatch [OTR]

C36.1 Applicabili ty to language

¢
pufi

&
ax

There are two concerns identified with this vulnerability. The first is the corruption of the execution stack due to

the incorrect number or type of actual parameters. The second is the corruption of the execution stack due to

calls to extenally compiled modules.

In Ada, at compilation time, the parameter association is checked to ensure that the type of each actual
parameter matches the type of the corresponding formal parameter. In addition, the formal parameter

specification may includeedault expressions for a parameter. Hence, the procedure may be called with some
actual parameters missing. In this case, if there is a default expression for the missing parameter, then the call will
be compiled without any errors. If default expressi@ms not specified, then the procedure call with insufficient

actual parameters will be flagged as an error at compilation time.

Caution must be used when specifying default expressions for formal parameters, as their use may result in
successful compilain of subprogram calls with an incorrect signaturbe execution stack will not be corrupted

in this event but the program may be executing with unexpected values.

When calling externally compiled modules that are Ada program units, the type matchirsylapibgram
interface signatures are monitored and checked as part of the compilation and linking of the full application.
When calling externally compiled modules in other programming languages, additional steps are needed to
ensure that the number and tys of the parameters for these external modules are correct.

178

© ISQIEC2012 ¢ All rights reserve

QX

OO ~NO O WDN =

14

15
16

17

18
19
20
21
22
23

24

25

26
27
28
29

30
31

32

33
34
35

Baseline Editiol2 TR 24772 WG 23/N @10

C36.2 Guidance to language users

9 Do not use default expressions for formal parameters.

1 Interfaces between Ada program units and program units in other languages can be managed using
pragma Import to specify subprograms that are defined externally gnalgma Exportto specify
subprograms that are used externally. Thesagmas specify the imported and exported aspects of the
subprograms, this includes the calling convention. Like subprogramalafi@rameters need to be
specified when usingragma Importandpragma Export.

1 Thepragma Conventiormay be used to identify when an Ada entity should use the calling conventions of
a different programming language facilitating the correct usage oettexution stack when interfacing
with other programming languages.

1 In addition, theValid attribute may be used to check if an object that is part of an interface with another
language has a valid value and type.

C37 Recursion [GDL]

C37.1 Applicability to language

Ada permits recursion. The exceptiSiorage_Errois raised when the recurring execution results in insufficient
storage.

C37.2 Guidance to language users

9 If recursion is used, thenStorage Erroexception handler may be used to handle ifiient storage
due to recurring execution.

1 Alternatively, the asynchronous control construct may be used to time the execution of a recurring call
and to terminate the call if the time limit is exceeded.

1 In Ada, thepragma Restrictiongnay be invoked wh the parametemNo_Recursionlin this case, the
compiler will ensure thats@part of the execution of a subprogram the same subprogram is not invoked.

C38 Ignored Error Status and Unhandled Exceptions [OYB]

C38.1 Applicability to language

Ada offers aet of predefined exceptions for error conditions that may be detected by checks that are compiled
into a program. In addition, the programmer may define exceptions that are appropriate for their application.
These exceptions are handled using an excegtamdler. Exceptions may be handled in the environment where
the exception occurs or may be propagated out to an enclosing scope.

As described i6.38, there is some complexity in understanding the exception handling methodology especially
with respect to objectoriented programming and muithreaded execution.

C38.2 Guidance to language users

1 In addition to the mitigations defined in the main text, values delivered to an Ada program from an
external device may be checked for validity priob&ing used. This is achieved by testing \adid
attribute.

© ISTIEC2012¢ All rights reserved 17¢

WG 23/N @10 Baseline Edition 2TR 24772

1 C39 Termination Strategy [REU]

2 C39.1 Applicability to language

3 An Ada system that consists of multiple tasks is subject to the same hazards as multithreaded systems in other
4 languages. A tagkat fails, for example, because its execution violates a langdafjped check, terminates
5 quietly.

6 Any other task that attempts to communicate with a terminated task will receive the excepéisking_Error
7 The undisciplined use of trabort statementor the asynchronous transfer of control feature may destroy the
8 functionality of a multitasking program.

9 (C39.2 Guidance to language users

10 1 Include exception handlers for every task, so that their unexpected termination can be handled and
11 possibly communited to the execution environment.

12 1 Use objects of controlled types to ensure that resources are properly released if a task terminates

13 unexpectedly.

14 1 Theabort statement should be used sparingly, if at all.

15 1 For highintegrity systems, exception handlingusually forbidden. However, a tdpvel exception

16 handler can be used to restore the overall system to a coherent state.

17 1 Define interrupt handlers to handle signals that come from the hardware or the operating system. This
18 mechanism can also be used tddarobustness to a concurrent program.

19 1 Annex C of the Ada Reference Manual (Systems Programming) defimescame Ada.Task _Termination
20 to be used to monitor task termination and its causes.

21 1 Annex H of the Ada Reference Manual (High Integrity Systerassjibes severgiragma, restrictions,

22 and other language features to be used when writing systems forgiigility applications. For

23 example, thepragma Detect_Blockingorces an implementation to detect a potentially blocking

24 operation within a proteted operation, and to raise an exception in that case.

25 C40 Type-breaking Reinterpretation of Data [AMV]

26 C40.1 Applicability to language

27 UncheckedConversioncan be used to bypass the typlecking rules, and its use is thus unsafe, as in any other
28 languaye. The same applies to the uselifcheckedUnion, even though the language specifies various inference
29 rules that the compiler must use to catch statically detectable constraint violations.

30 Type reinterpretation is a universal programming need, and mblesprogramming language can exist without
31 some mechanism that bypasses the type model. Ada provides these mechanisms with some additional
32 safeguards, and makes their use purposely verbose, to alert the writer and the reader of a program to the
33 presence ban unchecked operation.

34 C40.2 Guidance to language users

35 1 The fact thatUnchecked_Conversida a generic function that must be instantiated explicitly (and given a
36 meaningful name) hinders its undisciplined use, and places a loud marker in the coderiers used.
37 Well-written Ada code will have a small set of instantiation&dJathecked Conversion

180 © ISTIEC2012 ¢ All rights reserve

O~NO Ul WNPE

©

10

11
12
13
14
15

16
17
18

19

20
21
22
23
24

25

26
27
28

29
30
31

32
33

Baseline Editiol2 TR 24772 WG 23/N @10

1 Most implementations require the source and target types to have the same size in bits, to prevent
accidental truncation or sign extension.

1 UncheckedUnionshould only be used in multitnguage programs that need to communicate data
between Ada and C or C++. Otherwise the use of discriminated types prevents "punning" between values
of two distinct types that happen to share storage.

9 Using address clauséo obtain overlays should be avoided. If the types of the objects are the same, then
a renaming declaration is preferable. Otherwise, gieagma Importshould be used to inhibit the
initialization of one of the entities so that it does not interfere wikie initialization of the other one.

C41 Memory Leak [XYL]

C41.1 Applicability to language

For objects that are allocated from the heap without the use of reference counting, the memory leak vulnerability
is possible in Ada. For objects that must altedaom a storage pool, the vulnerability can be present but is
restricted to the single pool and which makes it easier to detect by verification. For objects of a controlled type
that uses referencing counting and that are not part of a cyclic referetngetsre, the vulnerability does not

exist.

Ada does not mandate the use of a garbage collector, but Ada implementations are free to provide such memory
reclamation. For applications that use and return memory on an implementation that provides garbage
collection, the issues associated with garbage collection exist in Ada.

C41.2 Guidance to language users

1 Use storage pools where possible.

1 Use controlled types and reference counting to implement explicit storage management systems that
cannot have storagkeaks.

1 Use a completely static model where all storage is allocated from global memory and explicitly managed
under program control.

C42 Templates and Generics [SYM]

With the exception of unsafe programming (988), this vulnerability is not applicablto Ada ashe Ada generics
model is based on imposing a contract on the structure and operations of the types that can be used for
instantiation. Also, explicit instantiation of the generic is required for each particular type.

Therefore, the compilesiable to check the generic body for programming errors, independently of actual
instantiations. At each actual instantiation, the compiler will also check that the instantiated type meets all the
requirements of the genericontract.

Adaalsodoesnot@lg F2NJ WalLISOALFE OFaSQ ISy SNR @& conststet for alLd NI A
instantiations.

© ISTIEC2012¢ All rights reserved 181

