
 Document WG23 N0551

This is a cross check of the Joint Strike Fighter (JSF) C++ Coding Standards (available at http://www.stroustrup.com/JSF-AV-rules.pdf) with draft 3 (N0461).

The document has been modified to align all section numbers with the proposed format of TR24772-1, i.e. by reducing the subclause count by 1 for
every section 6.xx reference.

Currently, TR24772 categories that do not reference JSF rules: 6.14, 17, 19, 20, 22, 31, 43, 45, 47, 50, 51; 7.5-10

After the suggested changes (below), here are the TR24772 categories that do not reference JSF rules: 6.17, 20, 22, 31, 41, 45, 47, 50; 7.5-10

The term “AV” in the rules is for JSF AV.

Number Usage in
TR24772

JSF Rule Adjudication
“X” means that JSF
rule already appears
in TR24772, Style or
Performance issue
means that the issue
isn’t a vulnerability,
remainder are
suggested places for
inclusion in TR24772

Comments - SGM

1. AV Rule 1 Any one function (or method) will contain
no more than 200 logical source lines of code (L-
SLOCs).

Style issue

2. 6.46 [NYY] AV Rule 2 There shall not be any self-modifying code. X
3. AV Rule 3 All functions shall have a cyclomatic

complexity number of 20 or less.
Style issue

4. AV Rule 4 To break a “should” rule, the following
approval must be received by the developer: • approval
from the software engineering lead (obtained by the unit
approval in the developmental CM tool)

Style issue

5. AV Rule 5 To break a “will” or a “shall” rule, the Style issue

following approvals must be received by the developer:

• approval from the software engineering lead (obtained
by the unit approval in the developmental CM tool)
• approval from the software product manager (obtained
by the unit approval in the developmental CM tool)

6. AV Rule 6 Each deviation from a “shall” rule shall be
documented in the file that contains the deviation).
Deviations from this rule shall not be allowed, AV Rule
5 notwithstanding.

Style issue

7. AV Rule 7 Approval will not be required for a
deviation from a “shall” or “will” rule that complies
with an exception specified by that rule.

Style issue

8. 6.55 [MEM] AV Rule 8 All code shall conform to ISO/IEC
14882:2002(E) standard C++.

X

9. AV Rule 9 (MISRA Rule 5, Revised) Only those
characters specified in the C++ basic source character
set will be used.

Style issue

10. AV Rule 10 (MISRA Rule 6)
Values of character types will be restricted to a defined and
documented subset of ISO 10646-1.

Add to 6.17 [NAI]
Choice of Clear Names,
maybe 7.11 [HTS]
Resource Names

11. 6.55 [MEM] AV Rule 11 (MISRA Rule 7) Trigraphs will not be
used.

X

12. AV Rule 12 (Extension of MISRA Rule 7) The
following digraphs will not be used:

Alternative Primary alternative Primary
<% { :>]
%> } %: #
<: [%:%: ##

Style issue

13. AV Rule 13 (MISRA Rule 8) Multi-byte characters
and wide string literals will not be used.

Add to 6.54 [FAB]
Implementation-defined
Behavior

14. AV Rule 14 Literal suffixes shall use uppercase rather
than lowercase letters.

Style issue

15. 6.8 [HCB] AV Rule 15 (MISRA Rule 4, Revised) Provision shall X

6.9 [XYZ]
6.10 [XYW]
6.15 [FIF]
6.16 [PIK]

be made for run-time checking (defensive
programming).

16. 6.43 [TRJ] AV Rule 16 Only DO-178B level A [15] certifiable or
SEAL 1 C/C++ libraries shall be used with safety-
critical (i.e. SEAL 1) code [13].

X Disagree with the reference in
TR24772-1. TRJ is about passing
arguments to library functions,
JSF AV 16 is about certifiable
libraries.

17. 6.52 [BQF]
6.53 [EWF]
6.54 [FAB]

AV Rule 17 (MISRA Rule 119) The error indicator
errno shall not be used.

X

18. 6.43 [TRJ],
6.52 [BQF]
6.53 [EWF]
6.54 [FAB]

AV Rule 18 (MISRA Rule 120) The macro offsetof, in
library <stddef.h>, shall not be used.

X

19. 6.43 [TRJ]
6.52 [BQF]
6.53 [EWF]
6.54 [FAB]

AV Rule 19 (MISRA Rule 121) <locale.h> and the
setlocale function shall not be used.

X

20. 6.32 [CSJ]
6.43 [TRJ]
6.52 [BQF]
6.53 [EWF]
6.54 [FAB]

AV Rule 20 (MISRA Rule 122) The setjmp macro and
the longjmp function shall not be used.

X

21. 6.43 [TRJ]
6.52 [BQF]
6.53 [EWF]
6.54 [FAB]

AV Rule 21 (MISRA Rule 123) The signal handling
facilities of <signal.h> shall not be used.

X

22. 6.43 [TRJ]
6.52 [BQF]
6.53 [EWF]
6.54 [FAB]

AV Rule 22 (MISRA Rule 124, Revised) The
input/output library <stdio.h> shall not be used.

X

23. 6.43 [TRJ]
6.52 [BQF]
6.53 [EWF]
6.54 [FAB]

AV Rule 23 (MISRA Rule 125) The library functions
atof, atoi and atol from library <stdlib.h> shall not be
used.

X

24. 6.37 [REU]
6.43 [TRJ]
6.52 [BQF]

AV Rule 24 (MISRA Rule 126) The library functions
abort, exit, getenv and system from library <stdlib.h>

X

6.53 [EWF]
6.54 [FAB]

shall not be used.

25. 6.8 [HCB]
6.43 [TRJ]
6.52 [BQF]
6.53 [EWF]
6.54 [FAB]

AV Rule 25 (MISRA Rule 127) The time handling
functions of library <time.h> shall not be used.

X

26. 6.48 [NMP] AV Rule 26 Only the following pre-processor
directives shall be used:

1. #ifndef
2. #define
3. #endif
4. #include

X

27. 6.48 [NMP] AV Rule 27 #ifndef, #define and #endif will be used to
prevent multiple inclusions of the same header file.
Other techniques to prevent the multiple inclusions of
header files will not be used.

X

28. 6.48 [NMP] AV Rule 28 The #ifndef and #endif pre-processor
directives will only be used as defined in AV Rule 27 to
prevent multiple inclusions of the same header file.

X

29. 6.48 [NMP] AV Rule 29 The #define pre-processor directive shall
not be used to create inline macros. Inline functions
shall be used instead.

X

30. 6.48 [NMP] AV Rule 30 The #define pre-processor directive shall
not be used to define constant values. Instead, the const
qualifier shall be applied to variable declarations to
specify constant values.

X

31. 6.48 [NMP] AV Rule 31 The #define pre-processor directive will
only be used as part of the technique to prevent multiple
inclusions of the same header file.

X

32. 6.48 [NMP] AV Rule 32 The #include pre-processor directive will
only be used to include header (*.h) files.

X

33. AV Rule 33 The #include directive shall use the
<filename.h> notation to include header files.

Style issue

34. AV Rule 34 Header files should contain logically
related declarations only.

Style issue

35. AV Rule 35 A header file will contain a mechanism
that prevents multiple inclusions of itself.

Should 6.36 Recursion be
expanded to include this?

This is not the classic style of
recursion. Should go in 6.50 Pre-
processor directives

36. AV Rule 36 Compilation dependencies should be
minimized when possible.

Style issue

37. AV Rule 37 Header (include) files should include only
those header files that are required for them to
successfully compile. Files that are only used by the
associated .cpp file should be placed in the .cpp file—
not the .h file.

Style issue

38. AV Rule 38 Declarations of classes that are only
accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward
declarations.

Style/performance issue

39. AV Rule 39 Header files (*.h) will not contain non-
const variable definitions or function definitions. (See
also AV Rule 139.)

Style issue

40. AV Rule 40 Every implementation file shall include the
header files that uniquely define the inline functions,
types, and templates used.

Style issue, but
inconsistency could be a
problem ala Heartbleed.
Suggest adding an
“inconsistency” category

Not clear where “inconsistency:
heading would go – new section
or in 6.50?

41. AV Rule 41 Source lines will be kept to a length of 120
characters or less.

Style issue

42. AV Rule 42 Each expression-statement will be on a
separate line.

Style issue

43. AV Rule 43 Tabs should be avoided. Style issue Agreed for C and C++, but this
may be a vulnerability. Some
languages use indentation
exclusively to tell the language
processor when nested
indentation ends. Some may use
spaces, and some may use tabs.

44. AV Rule 44 All indentations will be at least two spaces
and be consistent within the same source file.

Style issue Same as previous.

45. AV Rule 45 All words in an identifier will be separated
by the ‘_’ character.

Style issue

46. 7.11 [HTS] AV Rule 46 (MISRA Rule 11, Revised) User-specified
identifiers (internal and external) will not rely on
significance of more than 64 characters.

X

47. AV Rule 47 Identifiers will not begin with the
underscore character ‘_’.

Style issue Much more than a style issue.
Most libraries are C-based and the
convention is that library-level
global names begin with “_”,
hence this avoids replacing a
library function with something
local. This may be a new
vulnerability.

48. 6.17 [NAI] AV Rule 48 Identifiers will not differ by:
• Only a mixture of case
• The presence/absence of the underscore character
• The interchange of the letter ‘O’, with the number ‘0’

or the letter ‘D’
• The interchange of the letter ‘I’, with the number ‘1’

or the letter ‘l’
• The interchange of the letter ‘S’ with the number ‘5’
• The interchange of the letter ‘Z’ with the number 2
• The interchange of the letter ‘n’ with the letter ‘h’.

X

49. 6.17 [NAI] AV Rule 49 All acronyms in an identifier will be
composed of uppercase letters.

X

50. 6.17 [NAI] AV Rule 50 The first word of the name of a class,
structure, namespace, enumeration, or type created with
typedef will begin with an uppercase letter. All others
letters will be lowercase.

X

51. 6.17 [NAI]
7.11 [HTS]

AV Rule 51 All letters contained in function and
variable names will be composed entirely of lowercase
letters.

X

52. 6.17 [NAI] AV Rule 52 Identifiers for constant and enumerator
values shall be lowercase.

X

53. 6.17 [NAI]
7.11 [HTS]

AV Rule 53 Header files will always have a file name
extension of ".h".

X

54. 6.17 [NAI]
7.11 [HTS]

AV Rule 54 Implementation files will always have a
file name extension of ".cpp".

X

55. 6.17 [NAI]
7.11 [HTS]

AV Rule 55 The name of a header file should reflect
the logical entity for which it provides declarations.

X

56. 6.17 [NAI]
7.11 [HTS]

AV Rule 56 The name of an implementation file
should reflect the logical entity for which it provides
definitions and have a “.cpp” extension (this name will
normally be identical to the header file that provides the
corresponding declarations.)

X

57. AV Rule 57 The public, protected, and private sections
of a class will be declared in that order (the public
section is declared before the protected section which is
declared before the private section).

Style issue This is more than style. Most
languages have some sort of
textual order dependency, and
with languages that permit
overriding, a different evaluation
order could change the meaning
of programs.

58. AV Rule 58 When declaring and defining functions
with more than two parameters, the leading parenthesis
and the first argument will be written on the same line
as the function name. Each additional argument will be
written on a separate line (with the closing parenthesis
directly after the last argument).

Style issue

59. 6.28 [EOJ] AV Rule 59 (MISRA Rule 59, Revised) The
statements forming the body of an if, else if, else, while,
do…while or for statement shall always be enclosed in
braces, even if the braces form an empty block.

X

60. AV Rule 60 Braces ("{}") which enclose a block will
be placed in the same column, on separate lines directly
before and after the block.

Style issue

61. AV Rule 61 Braces ("{}") which enclose a block will
have nothing else on the line except comments (if
necessary).

Style issue

62. AV Rule 62 The dereference operator ‘*’ and the
address-of operator ‘&’ will be directly connected with
the type-specifier.

Style issue

63. AV Rule 63 Spaces will not be used around ‘.’ or ‘->’,
nor between unary operators and operands.

Style issue

64. AV Rule 64 A class interface should be complete and Style issue

minimal.
65. AV Rule 65 A structure should be used to model an

entity that does not require an invariant.
Style issue

66. AV Rule 66 A class should be used to model an entity
that maintains an invariant.

Style issue

67. AV Rule 67 Public and protected data should only be
used in structs—not classes.

Style issue

68. AV Rule 68 Unneeded implicitly generated member
functions shall be explicitly disallowed.

Style issue

69. AV Rule 69 A member function that does not affect the
state of an object (its instance variables) will be
declared const.

Style issue

70. AV Rule 70 A class will have friends only when a
function or object requires access to the private
elements of the class, but is unable to be a member of
the class for logical or efficiency reasons.

Style issue This may be more than style. Lets
think about it.

71. 6.21 {LAV] AV Rule 71 Calls to an externally visible operation of
an object, other than its constructors, shall not be
allowed until the object has been fully initialized.

X

72. AV Rule 72 The invariant for a class should be:
• a part of the postcondition of every class constructor,
• a part of the precondition of the class destructor (if
any),
• a part of the precondition and postcondition of every
other publicly accessible operation.

Style issue

73. AV Rule 73 Unnecessary default constructors shall not
be defined. (See also AV Rule 143).

Add to 6.22 Initialization
of Variables [LAV], may
need to add new text to
6.24 to cover this instance

74. AV Rule 74 Initialization of nonstatic class members
will be performed through the member initialization list
rather than through assignment in the body of a
constructor.

Add to 6.23 Initialization
of Variables [LAV]

We need to determine if this is
C++-specific or good general
guidance.

75. AV Rule 75 Members of the initialization list shall be
listed in the order in which they are declared in the
class.

Style issue Most languages have some sort of
textual order dependency, and
with languages that permit
overriding, a different evaluation

order could change the meaning
of programs

76. AV Rule 76 A copy constructor and an assignment
operator shall be declared for classes that contain
pointers to data items or nontrivial destructors.

Doesn’t seem to fit any
category cleanly, so
either a category needs to
be expanded to include it
or a new category
created.

Agreed. This may be a new
vulnerability.

77. AV Rule 77 A copy constructor shall copy all data
members and bases that affect the class invariant (a data
element representing a cache, for example, would not
need to be copied).

Add to 6.41 Inheritance
[RIP], or could add to a
new inconsistency
category.

This is really saying that the copy
constructor must preserve class
invariance. The vulnerability is
listed, but the programmer
mitigation needs to be added to
6.41.5

78. AV Rule 78 All base classes with a virtual function
shall define a virtual destructor.

Add to 6.14 Dangling
Reference to Heap
[XYK], 6.16 Using Shift
Operations for
Multiplication and
Division [PIK]

Disagree with PIK. What does
shifting for
multiplication/division have to do
me memory allocation?

79. AV Rule 79 All resources acquired by a class shall be
released by the class’s destructor.

Add to 6.14 Dangling
Reference to Heap
[XYK], 6.16 Using Shift
Operations for
Multiplication and
Division [PIK]

In 6.14.5, final bullet,allocate and
free at same level – add
“including the release in a class
destructor of all resources
acquired by the class”

80. AV Rule 80 The default copy and assignment operators
will be used for classes when those operators offer
reasonable semantics.

Style issue Disagree. This goes with AV
Rules 76 and 77.

81. AV Rule 81 The assignment operator shall handle self-
assignment correctly

AV Rule 81
Self-assignment must be handled appropriately
by the assignment operator. Example A illustrates
a potential problem, whereas Example B
illustrates an acceptable approach.

Could be a new category.

The general term is “idempotent”.
Add to 6.41 [RIP] and ensure that
the idempotency requirement is
included.

Example A: Although it is not necessary to
check for self-assignment in all cases, the
following example illustrates a context where it
would be appropriate.

Base &operator= (const Base &rhs)
{
release_handle (my_handle); // Error: the
resource referenced by myHandle is
my_handle = rhs.myHandle; // erroneously
released in the self-assignment case.
return *this;
}

Example B: One means of handling self-
assignment is to check for self-assignment before
further processing continues as illustrated below.

Base &operator= (const Base& rhs)
{
if (this != &rhs) // Check for self assignment
before continuing.
{
release_handle(my_handle); // Release
resource.
my_handle = rhs.my_handle; // Assign
members (only one member in class).
}
else
{
}
return *this;

 }
82. 6.11 [HFC] AV Rule 82 An assignment operator shall return a

reference to *this.
X Cannot find Rule 82 in the TR.

This is a problem and rule
specific to C++ and OO
languages that use pointers.

83. 6.11 [HFC] AV Rule 83 An assignment operator shall assign all X Cannot find Rule 83 in the TR.
What is this notion in C++ that a

data members and bases that affect the class invariant (a
data element representing a cache, for example, would
not need to be copied).

pointer can refer to a cache?
Caches should be transparent.

84. 6.51 [BRS] AV Rule 84 Operator overloading will be used
sparingly and in a conventional manner.

X

85. AV Rule 85 When two operators are opposites (such as
== and !=), both will be defined and one will be defined
in terms of the other.

Style issue Far more than style. This is an
easy way to introduce an
exploitable hole in the
application. I believe that static
analysis tools check for this.

86. 6.41 [RIP]
6.51 [BRS]

AV Rule 86 Concrete types should be used to represent
simple independent concepts.

X

87. 6.41 [RIP] AV Rule 87 Hierarchies should be based on abstract
classes.

X

88. 6.41 [RIP]
6.51 [BRS]

AV Rule 88 Multiple inheritance shall only be allowed
in the following restricted form: n interfaces plus m
private implementations, plus at most one protected
implementation.

X

89. 6.41 [RIP] AV Rule 89 A base class shall not be both virtual and
non-virtual in the same hierarchy.

X Agreed that this is the spot, but no
rule there. Add this mitigation to
6.41.5

90. 6.41 [RIP] AV Rule 90 Heavily used interfaces should be
minimal, general and abstract.

X Agreed that this is the spot, but no
rule there.

91. 6.41 [RIP] AV Rule 91 Public inheritance will be used to
implement “is-a” relationships.

X Agreed that this is the spot, but no
rule there.

92. 6.4 [RIP] AV Rule 92 A subtype (publicly derived classes) will
conform to the following guidelines with respect to all
classes involved in the polymorphic assignment of
different subclass instances to the same variable or
parameter during the execution of the system:
• Preconditions of derived methods must be at least as
weak as the preconditions of the methods they override.
• Postconditions of derived methods must be at least as
strong as the postconditions of the methods they
override.
In other words, subclass methods must expect less and

X Agreed that this is the spot, but no
rule there. We need to decide how
much to expand 6.4 [RIP]

deliver more than the base class methods they override.
This rule implies that subtypes will conform to the
Liskov Substitution Principle.

93. 6.4 [RIP] AV Rule 93 “has-a” or “is-implemented-in-terms-of”
relationships will be modeled through membership or
non-public inheritance.

X Agreed that this is the spot, but no
rule there. We need to decide how
much to expand 6.4 [RIP]

94. 6.4 [RIP] AV Rule 94 An inherited nonvirtual function shall not
be redefined in a derived class.

X Agreed that this is the spot, but no
rule there. We need to decide how
much to expand 6.4 [RIP]

95. 6.4 [RIP] AV Rule 95 An inherited default parameter shall never
be redefined.

X Agreed that this is the spot, but no
rule there. We need to decide how
much to expand 6.41 [RIP]

96. 6.4 [RIP] AV Rule 96 Arrays shall not be treated
polymorphically.

X Agreed that this is the spot, but no
rule there. We need to decide how
much to expand 6.41 [RIP]

97. 6.4 [RIP]
6.51 [BRS]

AV Rule 97 Arrays shall not be used in interfaces.
Instead, the Array class should be used.

X

98. AV Rule 98 Every nonlocal name, except main(),
should be placed in some namespace.

Style issue This is more than style. If the
language has global namespace
and packaged namespaces, then
hiding or overloading is more
controllable if global is not used.

99. AV Rule 99 Namespaces will not be nested more than
two levels deep.

Style issue

100. AV Rule 100 Elements from a namespace should be
selected as follows:
• using declaration or explicit qualification for few
(approximately five) names,
• using directive for many names.

Style issue

101. 6.40 [SYM] AV Rule 101 Templates shall be reviewed as follows:
1. with respect to the template in isolation considering
assumptions or requirements placed on its arguments.
2. with respect to all functions instantiated by actual
arguments.

X

102. 6.40 [SYM] AV Rule 102 Template tests shall be created to cover
all actual template instantiations.

X

103. 6.40 [SYM] AV Rule 103 Constraint checks should be applied to X

template arguments.
104. 6.40 [SYM] AV Rule 104 A template specialization shall be

declared before its use.
X

105. 6.40 [SYM] AV Rule 105 A template definition’s dependence on its
instantiation contexts should be minimized.

X

106. AV Rule 106 Specializations for pointer types should
be made where appropriate.

Style/performance issue

107. AV Rule 107 (MISRA Rule 68) Functions shall
always be declared at file scope.

Style issue

108. 6.34 [OTR] AV Rule 108 (MISRA Rule 69) Functions with
variable numbers of arguments shall not be used.

X

109. AV Rule 109 A function definition should not be
placed in a class specification unless the function is
intended to be inlined.

Style issue Huh? Needs explanation.

110. AV Rule 110 Functions with more than 7 arguments
will not be used.

Style issue

111. AV Rule 111 A function shall not return a pointer or
reference to a non-static local object.

Add to 6.32 [CSJ]
Passing Parameters and
Return Values

112. AV Rule 112 Function return values should not
obscure resource ownership.

Add to 6.32 [CSJ]
Passing Parameters and
Return Values

This is not covered in 6.33, but
maybe should be.

113. 6.31 [EWD] AV Rule 113 (MISRA Rule 82, Revised) Functions
will have a single exit point.

X, Also add to 6.32 [CSJ]
Passing Parameters and
Return Values

It is a different issue for 6.33. One
could construct return values
differently on different paths, but
single exit is properly covered in
6.32.

114. AV Rule 114 (MISRA Rule 83, Revised) All exit
points of value-returning functions shall be through
return statements.

Add to 6.31 [EWD]
Structured Programming,
6.32 [CSJ] Passing
Parameters and Return
Values

I think that this rule is false.
Exception returns cannot go
through the return. We could
probably say “excluding
exception returns, and for
languages where subprogram exit
can avoid the return statement, ...”

115. 6.36 [OYB] AV Rule 115 (MISRA Rule 86) If a function returns
error information, then that error information will be
tested.

X

116. 6.32 [CSJ] AV Rule 116 Small, concrete-type arguments (two or X This is very C++ and similar

three words in size) should be passed by value if
changes made to formal parameters should not be
reflected in the calling function.

language specific.

117. 6.32 [CSJ] AV Rule 117 Arguments should be passed by reference
if NULL values are not possible:
AV Rule 117.1 An object should be passed as const T&
if the function should not change the value of the object.
AV Rule 117.2 An object should be passed as T& if the
function may change the value of the object.

X Are not AV 117 and 118 the
same?

118. 6.32 [CSJ] AV Rule 118 Arguments should be passed via pointers
if NULL values are possible:
AV Rule 118.1 An object should be passed as const T*
if its value should not be modified.
AV Rule 118.2 An object should be passed as T* if its
value may be modified.

X

119. 6.35 [GDL] AV Rule 119 (MISRA Rule 70) Functions shall not
call themselves, either directly or indirectly (i.e.
recursion shall not be allowed).

X

120. 6.20 [YOW] AV Rule 120 Overloaded operations or methods should
form families that use the same semantics, share the
same name, have the same purpose, and that are
differentiated by formal parameters.

X

121. AV Rule 121 Only functions with 1 or 2 statements
should be considered candidates for inline functions.

Style issue

122. AV Rule 122 Trivial accessor and mutator functions
should be inlined.

Style issue

123. AV Rule 123 The number of accessor and mutator
functions should be minimized.

Style issue

124. AV Rule 124 Trivial forwarding functions should be
inlined.

Style issue

125. AV Rule 125 Unnecessary temporary objects should be
avoided.

Style issue Disagree. Unnecessary temporary
objects could be a place for a
secret channel.

126. AV Rule 126 Only valid C++ style comments (//) shall
be used.

Style issue Disagree. Block-oriented
comments are susceptible to

having disabled code (hidden in
comments) introduced if block
comment terminator is moved.

127. 6.26 [XYQ]
 7.3 [BVQ]

AV Rule 127 Code that is not used (commented out)
shall be deleted.

X

128. AV Rule 128 Comments that document actions or
sources (e.g. tables, figures, paragraphs, etc.) outside of
the file being documented will not be allowed.

Style issue

129. AV Rule 129 Comments in header files should
describe the externally visible behavior of the functions
or classes being documented.

Style issue

130. AV Rule 130 The purpose of every line of executable
code should be explained by a comment, although one
comment may describe more than one line of code.

Style issue

131. AV Rule 131 One should avoid stating in comments
what is better stated in code (i.e. do not simply repeat
what is in the code).

Style issue

132. AV Rule 132 Each variable declaration, typedef,
enumeration value, and structure member will be
commented.

Style issue

133. AV Rule 133 Every source file will be documented
with an introductory comment that provides information
on the file name, its contents, and any program-required
information (e.g. legal statements, copyright
information, etc).

Style issue

134. AV Rule 134 Assumptions (limitations) made by
functions should be documented in the function’s
preamble.

Style issue

135. 6.20 [YOW] AV Rule 135 (MISRA Rule 21, Revised) Identifiers in
an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that
identifier.

X

136. 6.20 [YOW] AV Rule 136 (MISRA Rule 22, Revised) Declarations
should be at the smallest feasible scope.

X

137. 6.20 [YOW] AV Rule 137 (MISRA Rule 23) All declarations at file
scope should be static where possible.

X

138. 6.20 [YOW] AV Rule 138 (MISRA Rule 24) Identifiers shall not
simultaneously have both internal and external linkage
in the same translation unit.

X Check this.

139. 6.20 [YOW] AV Rule 139 (MISRA Rule 27) External objects will
not be declared in more than one file.

X Disagree that this is name reuse.

140. AV Rule 140 (MISRA Rule 28, Revised) The register
storage class specifier shall not be used.

Style issue

141. AV Rule 141 A class, structure, or enumeration will not
be declared in the definition of its type.

Style issue

142. AV Rule 142 (MISRA Rule 30, Revised) All variables
shall be initialized before use. (See also AV Rule 136,
AV Rule 71, and AV Rule 73, and AV Rule 143
concerning declaration scope, object construction,
default constructors, and the point of variable
introduction respectively.)

Add to 6.23 Initialization
of Variables

Maybe. Some languages have a
“dead” designation for
uninitialized memory that helps
detect errors.

143. 6.22 [LAV] AV Rule 143 Variables will not be introduced until
they can be initialized with meaningful values. (See also
AV Rule 136, AV Rule 142, and AV Rule 73
concerning declaration scope, initialization before use,
and default constructors respectively.)

X This is not possible in some
languages.

144. AV Rule 144 (MISRA Rule 31) Braces shall be used
to indicate and match the structure in the non-zero
initialization of arrays and structures.

Style issue

145. 6.5 [CCB] AV Rule 145 (MISRA Rule 32) In an enumerator list,
the ‘=‘ construct shall not be used to explicitly initialize
members other than the first, unless all items are
explicitly initialized.

X Not in 6.5

146. 6.4 [PLF] AV Rule 146 (MISRA Rule 15) Floating point
implementations shall comply with a defined floating
point standard.

X

147. 6.3 [STR]
6.4 [PLF]
6.22 [LAV]

AV Rule 147 (MISRA Rule 16) The underlying bit
representations of floating point numbers shall not be
used in any way by the programmer.

X

148. 6.2 [IHN]
6.27 [CLL]

AV Rule 148 Enumeration types shall be used instead
of integer types (and constants) to select from a limited
series of choices.

X

149. AV Rule 149 (MISRA Rule 19) Octal constants (other
than zero) shall not be used.

Style issue

150. AV Rule 150 Hexadecimal constants will be
represented using all uppercase letters.

Style issue

151. 7.4 [KLK] AV Rule 151 Numeric values in code will not be used;
symbolic values will be used instead.

X

152. AV Rule 152 Multiple variable declarations shall not
be allowed on the same line.

Style issue

153. 6.38 [AMV] AV Rule 153 (MISRA Rule 110, Revised) Unions
shall not be used.

X

154. 6.3 [STR] AV Rule 154 (MISRA Rules 111 and 112, Revised)
Bit-fields shall have explicitly unsigned integral or
enumeration types only.

X

155. 6.3 [STR] AV Rule 155 Bit-fields will not be used to pack data
into a word for the sole purpose of saving space.

X

156. AV Rule 156 (MISRA Rule 113) All the members of a
structure (or class) shall be named and shall only be
accessed via their names.

Doesn’t seem to fit any
category and is something
that is error prone. Either
expand one of the current
categories (not clear
which one) or add a new
category.

157. 6.24 [SAM] AV Rule 157 (MISRA Rule 33) The right hand
operand of a && or || operator shall not contain side
effects.

X

158. 6.24 [SAM] AV Rule 158 (MISRA Rule 34) The operands of a
logical && or || shall be parenthesized if the operands
contain binary operators.

X

159. AV Rule 159 Operators ||, &&, and unary & shall not
be overloaded.

Style issue

160. 6.25 [KOA] AV Rule 160 (MISRA Rule 35, Modified) An
assignment expression shall be used only as the
expression in an expression statement.

X

161. **No rule listed** No rule listed
162. AV Rule 162 Signed and unsigned values shall not be

mixed in arithmetic or comparison operations.
Add to 6.6 [FLC]
Numeric Conversion
Errors

163. AV Rule 163 Unsigned arithmetic shall not be used. Style issue, also a subset
of Rule 162.

C++-specific?

164. 6.9 [XYZ]
6.15 [FIF]
6.16 [PIK]

AV Rule 164 (MISRA Rule 38) The right hand
operand of a shift operator shall lie between zero and
one less than the width in bits of the left-hand operand
(inclusive).

X C++-specific?

165. AV Rule 165 (MISRA Rule 39) The unary minus
operator shall not be applied to an unsigned expression.

Add to 6.6 [FLC]
Numeric Conversion
Errors

C++-specific? Should likely say,
in “C-based languages ...”

166. 6.24 [SAM]
6.25 [KOA]

AV Rule 166 (MISRA Rule 40) The sizeof operator
will not be used on expressions that contain side effects.

X

167. AV Rule 167 (MISRA Rule 41) The implementation of
integer division in the chosen compiler shall be
determined, documented and taken into account.

Add to 6.53 [EWF]
Undefined Behaviour

Yes. Rounding and truncation are
not obvious!

168. AV Rule 168 (MISRA Rule 42, Revised) The comma
operator shall not be used.

Style issue This is more than style.

169. AV Rule 169 Pointers to pointers should be avoided
when possible.

Add to 6.50 [SKL]
Provision of Inherently
Unsafe Operations

170. **No rule listed** No rule listed.
171. AV Rule 170 (MISRA Rule 102, Revised) More than

2 levels of pointer indirection shall not be used.
 Add to 6.50 [SKL] Provision of

Inherently
172. **No rule listed** No rule listed.
173. 6.33 [DCM] AV Rule 173 (MISRA Rule 106, Revised) The address

of an object with automatic storage shall not be
assigned to an object which persists after the object has
ceased to exist.

X

174. 6.13 [XYH] AV Rule 174 (MISRA Rule 107) The null pointer
shall not be de-referenced.

X

175. AV Rule 175 A pointer shall not be compared to
NULL or be assigned NULL; use plain 0 instead.

Add to 6.12 [RVG]
Pointer Arithmetic,
expand text of 6.12 to
include this.

176. AV Rule 176 A typedef will be used to simplify
program syntax when declaring function pointers.

Style issue Consider this in 6.47 [NMP] Pre-
processor directives. I disagree
with this guidance.

177. AV Rule 177 User-defined conversion functions Style issue

should be avoided.
178. AV Rule 178 Down casting (casting from base to

derived class) shall only be allowed through one of the
following mechanism:
• Virtual functions that act like dynamic casts (most
likely useful in relatively simple cases)
• Use of the visitor (or similar) pattern (most likely
useful in complicated cases)

Add to 6.41 [RIP]
Inheritance

Maybe add in the negative sense?

179. AV Rule 179 A pointer to a virtual base class shall not
be converted to a pointer to a derived class.

Add to 6.41 [RIP]
Inheritance

Maybe add in the negative sense?

180. AV Rule 180 (MISRA Rule 43) Implicit conversions
that may result in a loss of information shall not be
used.

Add to 6.40 [SYM]
Templates and Generics

181. AV Rule 181 (MISRA Rule 44) Redundant explicit
casts will not be used.

Style issue The issue here is that a cast that is
redundant today may not be
redundant after maintenance, and
may hide a defect.

182. AV Rule 182 (MISRA Rule 45) Type casting from any
type to or from pointers shall not be used.

Add to 6.11 [HFC]
Pointer Type Conversions

183. 6.2 [IHN]
6.11 [HFC]
6.38 [AMV]

AV Rule 183 Every possible measure should be taken
to avoid type casting.

X

184. 6.4 [PLF] AV Rule 184 Floating point numbers shall not be
converted to integers unless such a conversion is a
specified algorithmic requirement or is necessary for a
hardware interface.

X Disagree that 6.4 currently covers
this issue. Add vulnerability
material to 6.4?

185. AV Rule 185 C++ style casts (const_cast,
reinterpret_cast, and static_cast) shall be used instead of
the traditional C-style casts.

Add to 6.11 [HFC]
Pointer Type Conversions

To C-ish?

186. 6.26 [XYQ] AV Rule 186 (MISRA Rule 52) There shall be no
unreachable code.

X

187. AV Rule 187 (MISRA Rule 53, Revised) All non-null
statements shall potentially have a side-effect.

Add to 6.26 Likely
Incorrect Expressions

This is a tautology. Even NOP
statements have a side effect in
that they consume time. It all
depends upon how deeply you
look for a side effect.

188. AV Rule 188 (MISRA Rule 55, Revised) Labels will Style issue

not be used, except in switch statements.
189. 6.31 [EWD] AV Rule 189 (MISRA Rule 56) The goto statement

shall not be used.
X

190. 6.31 [EWD] AV Rule 190 (MISRA Rule 57) The continue
statement shall not be used.

X

191. 6.31 [EWD] AV Rule 191 (MISRA Rule 58) The break statement
shall not be used (except to terminate the cases of a
switch statement).

X

192. 6.28 [EOJ] AV Rule 192 (MISRA Rule 60, Revised) All if, else if
constructs will contain either a final else clause or a
comment indicating why a final else clause is not
necessary.

X

193. 6.27 [CLL] AV Rule 193 (MISRA Rule 61) Every non-empty case
clause in a switch statement shall be terminated with a
break statement.

X

194. 6.27 [CLL] AV Rule 194 (MISRA Rule 62, Revised) All switch
statements that do not intend to test for every
enumeration value shall contain a final default clause.

X

195. 6.27 [CLL] AV Rule 195 (MISRA Rule 63) A switch expression
will not represent a Boolean value.

X

196. 6.27 [CLL] AV Rule 196 (MISRA Rule 64, Revised) Every switch
statement will have at least two cases and a potential
default.

X

197. 6.4 [PLF] AV Rule 197 (MISRA Rule 65) Floating point
variables shall not be used as loop counters.

X

198. AV Rule 198 The initialization expression in a for loop
will perform no actions other than to initialize the value
of a single for loop parameter. Note that the
initialization expression may invoke an accessor that
returns an initial element in a sequence:

for (Iter_type p = c.begin() ; p != c.end() ;
++p) // Good
{
…
}

Add to 6.29 [TEX] Loop
Control Variables

The added text should say “In
languages that permit complex
expressions in the definition of
the loop control variable, ...”

199. AV Rule 199 The increment expression in a for loop
will perform no action other than to change a single
loop parameter to the next value for the loop.

Add to 6.29[TEX] Loop
Control Variables

The added text should say “In
languages that do not prevent the
update of the loop control
variable, ...”

200. AV Rule 200 Null initialize or increment expressions in
for loops will not be used; a while loop will be used
instead.

Style issue This is a crucial issue, not a style
issue. In fact, even in while loops,
a null update of the loop control
variable(s) will cause infinite
looping.

201. 6.29 [TEX] AV Rule 201 (MISRA Rule 67, Revised) Numeric
variables being used within a for loop for iteration
counting shall not be modified in the body of the loop.

X

202. 6.4 [PLF] AV Rule 202 (MISRA Rule 50) Floating point
variables shall not be tested for exact equality or
inequality.

X

203. AV Rule 203 (MISRA Rule 51, Revised) Evaluation
of expressions shall not lead to overflow/underflow
(unless required algorithmically and then should be
heavily documented).

Add to 6.15 [FIF]
Arithmetic Wrap-around
Error

204. 6.23 [JCW]
6.24 [SAM]

AV Rule 204 A single operation with side-effects shall
only be used in the following contexts:

1. by itself
2. the right-hand side of an assignment
3. a condition
4. the only argument expression with a side-

effect in a function call
5. condition of a loop
6. switch condition
7. single part of a chained operation.

X Check carefully.

205. AV Rule 205 The volatile keyword shall not be used
unless directly interfacing with hardware.

Add to 6.19 [WXQ] Dead
Store

206. 6.39 [XYL] AV Rule 206 (MISRA Rule 118, Revised)
Allocation/deallocation from/to the free store (heap)
shall not occur after initialization.
Note that the “placement” operator new(), although not
technically dynamic memory, may only be used in low-
level memory management routines. See AV Rule 70.1

X

for object lifetime issues associated with placement
operator new().

207. AV Rule 207 Unencapsulated global data will be
avoided.

Add to 6.20 [YOW]
Identifier Name Reuse

Really a namespace issue?

208. 6.36 [OYB]
6.47 [HJW]

AV Rule 208 C++ exceptions shall not be used (i.e.
throw, catch and try shall not be used.)

X Huh?

209. AV Rule 209 (MISRA Rule 13, Revised) The basic
types of int, short, long, float and double shall not be
used, but specific-length equivalents should be
typedef’d accordingly for each compiler, and these type
names used in the code.

Style issue Much more than style. This
avoids compiler-specific default
behaviours (such as reliance on
sizeof(int))

210. AV Rule 210 Algorithms shall not make assumptions
concerning how data is represented in memory (e.g. big
endian vs. little endian, base class subobject ordering in
derived classes, nonstatic data member ordering across
access specifiers, etc.)

Add to 6.3 [STR] Bit
Representations, 6.4
[PLF] Floating-point
Arithmetic

We need more – heavily
document assumptions, and
provide error detection and
raising if assumptions are
violated.

211. AV Rule 211 Algorithms shall not assume that shorts,
ints, longs, floats, doubles or long doubles begin at
particular addresses.

Add to 6.33 [DCM]
Dangling References to
Stack Frames

This is an alignment

212. AV Rule 212 Underflow or overflow functioning shall
not be depended on in any special way.

Add to 6.6 [FLC]
Numeric Conversion
Errors, 6.53 [EWF]
Undefined Behaviour

213. 6.23 [SAM]
6.24 [JCW]

AV Rule 213 (MISRA Rule 47, Revised) No
dependence shall be placed on C++’s operator
precedence rules, below arithmetic operators, in
expressions.

X

214. AV Rule 214 Assuming that non-local static objects, in
separate translation units, are initialized in a special
order shall not be done.

Add to 6.23 [JCW]
Operator
Precedence/Order of
Evaluation

215. 6.12 [RVG] AV Rule 215 (MISRA Rule 101) Pointer arithmetic
will not be used.

X

216. AV Rule 216 Programmers should not attempt to
prematurely optimize code.

Performance issue

217. AV Rule 217 Compile-time and link-time errors should
be preferred over run-time errors.

Style issue

218. AV Rule 218 Compiler warning levels will be set in
compliance with project policies.

Style issue

219. AV Rule 219 All tests applied to a base class interface
shall be applied to all derived class interfaces as well. If
the derived class poses stronger
postconditions/invariants, then the new postconditions
/invariants shall be substituted in the derived class tests.

Add to 6.42 Inheritance

220. AV Rule 220 Structural coverage algorithms shall be
applied against flattened classes.

Add to 6.42 [RIP]
Inheritance

Huh?

221. AV Rule 221 Structural coverage of a class within an
inheritance hierarchy containing virtual functions shall
include testing every possible resolution for each set of
identical polymorphic references.

Add to 6.42 [RIP]
Inheritance

Huh?

