
ISO/IEC/JTC 1/SC 22/WG 23 N0724 
16 June 2016 

Overarching cross-language standard needs 

These are recommended standards for the language developers’ 
community, standards that if developed could be of use to all languages 
such as the standards ISO/IEC/IEC 60559 Floating-Point arithmetic, 
ISO/IEC 10967-1:1994, Part 1: Integer and floating point arithmetic, and 
ISO/IEC 10967-2:2001, Part 2: Elementary numerical functions: 

1. Standardized	terminology	for	type	systems	
a. Standardize	on	a	common,	uniform	terminology	to	describe	type	systems	so	that	

programmers	experienced	in	other	languages	can	reliably	learn	the	type	system	of	a	
language	that	is	new	to	them.	

2. Standardized	calling	
a. Standardize	provisions	for	inter-language	calling.	
b. Standardize	on	where	parameter	checks	are	done;		that	is,	the	receiving	program	does	

the	parameter	checks,	not	the	calling	program.	(this	is	one	I	added)	
3. Standardized	terminology	for	generics/templates	

a. Standardize	on	a	common,	uniform	terminology	to	describe	generics/templates	so	that	
programmers	experienced	in	one	language	can	reliably	learn	and	refer	to	the	type	
system	of	another	language	that	has	the	same	concept,	but	with	a	different	name.	

4. Standardized	fault	handling	
a. Standardize	the	terminology	and	means	to	perform	fault	handling.	
b. Standardize	a	set	of	mechanisms	for	detecting	and	treating	error	conditions	so	that	all	

languages	to	the	extent	possible	could	use	them.		This	does	not	mean	that	all	languages	
should	use	the	same	mechanisms	as	there	should	be	a	variety,	but	each	of	the	
mechanisms	should	be	standardized.	

Top 11 list of what a language should have or do: 
1. Floating	point	

a. A	language	should	adhere	to	ISO/IEC/IEC	60559	Floating-Point	arithmetic.	
b. A	language	should	adhere	to	ISO/IEC	10967-1:1994,	Part	1:	Integer	and	floating	point	

arithmetic,	and	ISO/IEC	10967-2:2001,	Part	2:	Elementary	numerical	functions.	
2. Conversions	

a. A	language	should	not	allow	unchecked	casts.	
b. A	language	should	provide	mechanisms	to	prevent	programming	errors	due	to	

conversions.	
3. Bounds	checking	



a. A	language	should	perform	automatic	bounds	checking	on	accesses	to	array	elements,	
unless	the	compiler	can	statically	determine	that	the	check	is	unnecessary.		This	
capability	may	need	to	be	optional	for	performance	reasons.	

4. Array	operations	
a. A	language	should	provide	whole	array	operations,	such	as	full	array	assignment	and	

safe	copying	of	arrays	that	may	obviate	the	need	to	access	individual	elements.	
5. Libraries	

a. A	language	should	define	libraries	that	provide	the	capability	to	validate	parameters	
during	compilation,	during	execution	or	by	static	analysis.	

b. A	language	should	provide	specified	means	to	describe	the	signatures	of	subprograms.	
c. A	language	should	not	allow	assignments	used	as	function	parameters.	

6. Errors	
a. Language	should	provide	facilities	to	specify	either	an	error,	a	saturated	value,	or	a	

modulo	result	when	numeric	overflow	occurs.		Ideally,	the	selection	among	these	
alternatives	could	be	made	by	the	programmer.	

7. Undefined/unspecified/implementation	defined	behavior	
a. A	language	should	provide	a	list	of	undefined,	unspecified	and	implementation-defined	

behaviours.	
b. A	language	should	minimize	the	amount	of	unspecified	and	undefined	behaviours,	and	

minimize	the	number	of	possible	behaviours	for	any	given	"unspecified"	choice.	
8. Deprecated	features	

a. A	language	should	provide	language	mechanisms	that	optionally	disable	deprecated	
language	features.	

9. Concurrency	
a. A	language	should	create	primitives	that	let	applications	specify	regions	of	sequential	

access	to	data	using	mechanisms	such	as	protected	regions,	Hoare	monitors	or	
synchronous	message	passing	between	threads.	

10. Loops	
a. A	language	should	add	an	identifier	type	for	loop	control	that	cannot	be	modified	by	

anything	other	than	the	loop	control	construct.	
11. Boolean	expression	

a. A	language	should	not	allow	assignments	within	a	Boolean	expression.	
	
	

Complete list of ISO/IEC 24772-1 Implications for Standardization (this is 
what is in sections 6.x.6): 

1. Language	specifiers	should	standardize	on	a	common,	uniform	terminology	to	describe	their	
type	systems	so	that	programmers	experienced	in	other	languages	can	reliably	learn	the	type	
system	of	a	language	that	is	new	to	them.	

2. Provide	a	mechanism	for	selecting	data	types	with	sufficient	capability	for	the	problem	at	hand.	
3. Provide	a	way	for	the	computation	to	determine	the	limits	of	the	data	types	actually	selected.	



4. Language	implementers	should	consider	providing	compiler	switches	or	other	tools	to	provide	
the	highest	possible	degree	of	checking	for	type	errors.	

5. For	languages	that	are	commonly	used	for	bit	manipulations,	an	API	(Application	Programming	
Interface)	for	bit	manipulations	that	is	independent	of	word	size	and	machine	instruction	set	
should	be	defined	and	standardized.	

6. Languages	that	do	not	already	adhere	to	or	only	adhere	to	a	subset	of	IEC	60559	[7]	should	
consider	adhering	completely	to	the	standard.		Examples	of	standardization	that	should	be	
considered:	Languages	should	consider	providing	a	means	to	generate	diagnostics	for	code	that	
attempts	to	test	equality	of	two	floating	point	values.	

7. Languages	should	consider	standardizing	their	data	type	to	ISO/IEC	10967-1:1994	and	ISO/IEC	
10967-2:2001.	

8. Languages	that	currently	permit	arithmetic	and	logical	operations	on	enumeration	types	could	
provide	a	mechanism	to	ban	such	operations	program-wide.	

9. Languages	that	provide	automatic	defaults	or	that	do	not	enforce	static	matching	between	
enumerator	definitions	and	initialization	expressions	could	provide	a	mechanism	to	enforce	
such	matching.	

10. Languages	should	provide	mechanisms	to	prevent	programming	errors	due	to	conversions.	
11. Languages	should	consider	making	all	type-conversions	explicit	or	at	least	generating	warnings	

for	implicit	conversions	where	loss	of	data	might	occur.	
12. Eliminating	library	calls	that	make	assumptions	about	string	termination	characters.	
13. Checking	bounds	when	an	array	or	string	is	accessed,	see	C	Bounds	Checking	Library.	
14. Specifying	a	string	construct	that	does	not	need	a	string	termination	character.	
15. Languages	should	provide	safe	copying	of	arrays	as	built-in	operation.	
16. Languages	should	consider	only	providing	array	copy	routines	in	libraries	that	perform	checks	on	

the	parameters	to	ensure	that	no	buffer	overrun	can	occur.	
17. Languages	should	perform	automatic	bounds	checking	on	accesses	to	array	elements,	unless	the	

compiler	can	statically	determine	that	the	check	is	unnecessary.		This	capability	may	need	to	be	
optional	for	performance	reasons.	

18. Languages	that	use	pointer	types	should	consider	specifying	a	standardized	feature	for	a	pointer	
type	that	would	enable	array	bounds	checking.	

19. Languages	should	consider	providing	compiler	switches	or	other	tools	to	check	the	size	and	
bounds	of	arrays	and	their	extents	that	are	statically	determinable.	

20. Languages	should	consider	providing	whole	array	operations	that	may	obviate	the	need	to	
access	individual	elements.	

21. Languages	should	consider	the	capability	to	generate	exceptions	or	automatically	extend	the	
bounds	of	an	array	to	accommodate	accesses	that	might	otherwise	have	been	beyond	the	
bounds.	

22. Languages	should	consider	only	providing	libraries	that	perform	checks	on	the	parameters	to	
ensure	that	no	buffer	overrun	can	occur.	

23. Languages	should	consider	providing	full	array	assignment.	
24. Languages	should	consider	creating	a	mode	that	provides	a	runtime	check	of	the	validity	of	all	

accessed	objects	before	the	object	is	read,	written	or	executed.	



25. A	language	feature	that	would	check	a	pointer	value	for	NULL	before	performing	an	access	
should	be	considered.	

a. Implementations	of	the	free	function	could	tolerate	multiple	frees	on	the	same	
reference/pointer	or	frees	of	memory	that	was	never	allocated.	

b. Language	specifiers	should	design	generics	in	such	a	way	that	any	attempt	to	instantiate	
a	generic	with	constructs	that	do	not	provide	the	required	capabilities	results	in	a	
compile-time	error.	

26. For	properties	that	cannot	be	checked	at	compile	time,	language	specifiers	should	provide	an	
assertion	mechanism	for	checking	properties	at	run-time.		It	should	be	possible	to	inhibit	
assertion	checking	if	efficiency	is	a	concern.	

a. A	storage	allocation	interface	should	be	provided	that	will	allow	the	called	function	to	
set	the	pointer	used	to	NULL	after	the	referenced	storage	is	deallocated.	

27. Language	standards	developers	should	consider	providing	facilities	to	specify	either	an	error,	a	
saturated	value,	or	a	modulo	result	when	numeric	overflow	occurs.		Ideally,	the	selection	among	
these	alternatives	could	be	made	by	the	programmer.	

28. Not	providing	logical	shifting	on	arithmetic	values	or	flagging	it	for	reviewers.	
29. Languages	that	do	not	require	declarations	of	names	should	consider	providing	an	option	that	

does	impose	that	requirement.	
30. Languages	should	consider	providing	optional	warning	messages	for	dead	store.		
31. Languages	should	consider	requiring	mandatory	diagnostics	for	unused	variables.		
32. Languages	should	require	mandatory	diagnostics	for	variables	with	the	same	name	in	nested	

scopes.	
33. Languages	should	require	mandatory	diagnostics	for	variable	names	that	exceed	the	length	that	

the	implementation	considers	unique.	
34. Languages	should	consider	requiring	mandatory	diagnostics	for	overloading	or	overriding	of	

keywords	or	standard	library	function	identifiers.	
35. Languages	should	not	have	preference	rules	among	mutable	namespaces.	Ambiguities	should	

be	invalid	and	avoidable	by	the	user,	for	example,	by	using	names	qualified	by	their	originating	
namespace.	

36. Some	languages	have	ways	to	determine	if	modules	and	regions	are	elaborated	and	initialized	
and	to	raise	exceptions	if	this	does	not	occur.	Languages	that	do	not,	could	consider	adding	such	
capabilities.		

37. Languages	could	consider	setting	aside	fields	in	all	objects	to	identify	if	initialization	has	
occurred,	especially	for	security	and	safety	domains.		

38. Languages	that	do	not	support	whole-object	initialization,	could	consider	adding	this	capability.		
39. Language	definitions	should	avoid	providing	precedence	or	a	particular	associativity	for	

operators	that	are	not	typically	ordered	with	respect	to	one	another	in	arithmetic,	and	instead	
require	full	parenthesization	to	avoid	misinterpretation.	

a. In	developing	new	or	revised	languages,	give	consideration	to	language	features	that	
will	eliminate	or	mitigate	this	vulnerability,	such	as	pure	functions.	

40. Languages	should	consider	providing	warnings	for	statements	that	are	unlikely	to	be	right	such	
as	statements	without	side	effects.	A	null	(no-op)	statement	may	need	to	be	added	to	the	



language	for	those	rare	instances	where	an	intentional	null	statement	is	needed.	Having	a	null	
statement	as	part	of	the	language	will	reduce	confusion	as	to	why	a	statement	with	no	side	
effects	is	present	in	the	code.	

41. Languages	should	consider	not	allowing	assignments	used	as	function	parameters.	
42. Languages	should	consider	not	allowing	assignments	within	a	Boolean	expression.	
43. Language	definitions	should	avoid	situations	where	easily	confused	symbols	(such	as	=	and	==,	

or	;	and	:,	or	!=	and	/=)	are	valid	in	the	same	context.	For	example,	=	is	not	generally	valid	in	
an	if	statement	in	Java	because	it	does	not	normally	return	a	Boolean	value.		

a. Language	specifications	could	require	compilers	to	ensure	that	a	complete	set	of	
alternatives	is	provided	in	cases	where	the	value	set	of	the	switch	variable	can	be	
statically	determined.	

44. Adding	a	mode	that	strictly	enforces	compound	conditional	and	looping	constructs	with	explicit	
termination,	such	as	“end if”	or	a	closing	bracket.	

45. Syntax	for	explicit	termination	of	loops	and	conditional	statements.		
46. Features	to	terminate	named	loops	and	conditionals	and	determine	if	the	structure	as	named	

matches	the	structure	as	inferred.	
47. Language	designers	should	consider	the	addition	of	an	identifier	type	for	loop	control	that	

cannot	be	modified	by	anything	other	than	the	loop	control	construct.	
48. Languages	should	provide	encapsulations	for	arrays	that:	

a. Prevent	the	need	for	the	developer	to	be	concerned	with	explicit	bounds	values.	
b. Provide	the	developer	with	symbolic	access	to	the	array	start,	end	and	iterators.	

49. Languages	should	support	and	favor	structured	programming	through	their	constructs	to	the	
extent	possible.	

50. Programming	language	specifications	could	provide	labels—such	as	in,	out,	and	inout—that	
control	the	subprogram’s	access	to	its	formal	parameters,	and	enforce	the	access.	

51. Do	not	provide	means	to	obtain	the	address	of	a	locally	declared	entity	as	a	storable	value;	or	
52. Define	implicit	checks	to	implement	the	assurance	of	enclosed	lifetime	expressed	in	sub-clause	

5	of	this	vulnerability.	Note	that,	in	many	cases,	the	check	is	statically	decidable,	for	example,	
when	the	address	of	a	local	entity	is	taken	as	part	of	a	return	statement	or	expression.			

53. Language	specifiers	could	ensure	that	the	signatures	of	subprograms	match	within	a	single	
compilation	unit	and	could	provide	features	for	asserting	and	checking	the	match	with	
externally	compiled	subprograms.	

54. A	standardized	set	of	mechanisms	for	detecting	and	treating	error	conditions	should	be	
developed	so	that	all	languages	to	the	extent	possible	could	use	them.		This	does	not	mean	that	
all	languages	should	use	the	same	mechanisms	as	there	should	be	a	variety,	but	each	of	the	
mechanisms	should	be	standardized.	

55. Languages	should	consider	providing	a	means	to	perform	fault	handling.		Terminology	and	the	
means	should	be	coordinated	with	other	languages.	

56. Because	the	ability	to	perform	reinterpretation	is	sometimes	necessary,	but	the	need	for	it	is	
rare,	programming	language	designers	might	consider	putting	caution	labels	on	operations	that	
permit	reinterpretation.		For	example,	the	operation	in	Ada	that	permits	unconstrained	
reinterpretation	is	called	Unchecked_Conversion.	



57. Because	of	the	difficulties	with	undiscriminated	unions,	programming	language	designers	might	
consider	offering	union	types	that	include	distinct	discriminants	with	appropriate	enforcement	
of	access	to	objects.	

58. Provide	means	to	create	abstractions	that	guarantee	deep	copying	where	needed.	
59. Languages	can	provide	syntax	and	semantics	to	guarantee	program-wide	that	dynamic	memory	

is	not	used	(such	as	the	configuration	pragmas feature	offered	by	some	programming	
languages).	

60. Languages	can	document	or	specify	that	implementations	must	document	choices	for	dynamic	
memory	management	algorithms,	to	hope	designers	decide	on	appropriate	usage	patterns	and	
recovery	techniques	as	necessary	

61. Language	specifiers	should	standardize	on	a	common,	uniform	terminology	to	describe	
generics/templates	so	that	programmers	experienced	in	one	language	can	reliably	learn	and	
refer	to	the	type	system	of	another	language	that	has	the	same	concept,	but	with	a	different	
name.	

62. Language	specifiers	should	design	generics	in	such	a	way	that	any	attempt	to	instantiate	a	
generic	with	constructs	that	do	not	provide	the	required	capabilities	results	in	a	compile-time	
error.	

63. Language	specifiers	should	provide	an	assertion	mechanism	for	checking	properties	at	run-time,	
for	those	properties	that	cannot	be	checked	at	compile	time.		It	should	be	possible	to	inhibit	
assertion	checking	if	efficiency	is	a	concern.	

64. Language	specification	should	include	the	definition	of	a	common	versioning	method.	
65. Compilers	should	provide	an	option	to	report	the	class	in	which	a	resolved	method	resides.	
66. Runtime	environments	should	provide	a	trace	of	all	runtime	method	resolutions.	
67. Provide	language	mechanisms	to	formally	specify	preconditions	and	postconditions.	
68. Find	a	solution	to	the	problem.	
69. Do	not	allow	unchecked	casts.	
70. Clearly	state	whether	translators	can	extend	the	set	of	intrinsic	procedures	or	not.	
71. Clearly	state	what	the	precedence	is	for	resolving	collisions.	
72. Clearly	provide	ways	to	mark	a	procedure	signature	as	being	the	intrinsic	or	an	application	

provided	procedure.	
73. Require	that	a	diagnostic	is	issued	when	an	application	procedure	matches	the	signature	of	an	

intrinsic	procedure.	
74. Ensure	that	all	library	functions	defined	operate	as	intended	over	the	specified	range	of	input	

values	and	react	in	a	defined	manner	to	values	that	are	outside	the	specified	range.	
75. Languages	should	define	libraries	that	provide	the	capability	to	validate	parameters	during	

compilation,	during	execution	or	by	static	analysis.	
76. Develop	standard	provisions	for	inter-language	calling	with	languages	most	often	used	with	

their	programming	language.	
77. Provide	a	means	so	that	a	program	can	either	automatically	or	manually	check	that	the	digital	

signature	of	a	library	matches	the	one	in	the	compile/test	environment	
78. Provide	correct	linkage	even	in	the	absence	of	correctly	specified	procedure	signatures.		(Note	

that	this	may	be	very	difficult	where	the	original	source	code	is	unavailable.)	



79. Provide	specified	means	to	describe	the	signatures	of	subprograms.	
80. For	languages	that	provide	exceptions,	provide	a	mechanism	for	catching	all	possible	exceptions	

(for	example,	a	‘catch-all’	handler).		The	behaviour	of	the	program	when	encountering	an	
unhandled	exception	should	be	fully	defined.	

81. Provide	a	mechanism	to	determine	which	exceptions	might	be	thrown	by	a	called	library	
routine.	

82. Reduce	or	eliminate	dependence	on	lexical-level	pre-processors	for	essential	functionality	(such	
as	conditional	compilation).	

83. Provide	capabilities	to	inline	functions	and	procedure	calls,	to	reduce	the	need	for	pre-processor	
macros.	

84. Language	designers	should	consider	removing	or	deprecating	obscure,	difficult	to	understand,	or	
difficult	to	use	features.	

85. Language	designers	should	provide	language	directives	that	optionally	disable	obscure	language	
features.	

86. Languages	should	minimize	the	amount	of	unspecified	behaviours,	minimize	the	number	of	
possible	behaviours	for	any	given	"unspecified"	choice,	and	document	what	might	be	the	
difference	in	external	effect	associated	with	different	choices.	

87. Language	designers	should	minimize	the	amount	of	undefined	behaviour	to	the	extent	possible	
and	practical.	

88. Language	designers	should	enumerate	all	the	cases	of	undefined	behaviour.	
89. Language	designers	should	provide	mechanisms	that	permit	the	disabling	or	diagnosing	of	

constructs	that	may	produce	undefined	behaviour.	
a. Portability	guidelines	for	a	specific	language	should	provide	a	list	of	common	

implementation-defined	behaviours.	
b. Language	specifiers	should	enumerate	all	the	cases	of	implementation-defined	

behaviour.	
90. Language	designers	should	provide	language	directives	that	optionally	disable	obscure	language	

features.	
91. Obscure	language	features	for	which	there	are	commonly	used	alternatives	should	be	

considered	for	removal	from	the	language	standard.	
92. Obscure	language	features	that	have	routinely	been	found	to	be	the	root	cause	of	safety	or	

security	vulnerabilities,	or	that	are	routinely	disallowed	in	software	guidance	documents	should	
be	considered	for	removal	from	the	language	standard.	

93. Language	designers	should	provide	language	mechanisms	that	optionally	disable	deprecated	
language	features.	

94. Consider	including	automatic	synchronization	of	thread	initiation	as	part	of	the	concurrency	
model.	

95. Provide	a	mechanism	permitting	query	of	activation	success.	
96. Provide	a	mechanism	(either	a	language	mechanism	or	a	service	call)	to	signal	either	another	

thread	or	an	entity	that	can	be	queried	by	other	threads	when	a	thread	terminates.	
97. Languages	that	do	not	presently	consider	concurrency	should	consider	creating	primitives	that	

let	applications	specify	regions	of	sequential	access	to	data.		Mechanisms	such	as	protected	



regions,	Hoare	monitors	or	synchronous	message	passing	between	threads	result	in	significantly	
fewer	resource	access	mistakes	in	a	program.	

98. Provide	the	possibility	of	selecting	alternative	concurrency	models	that	support	static	analysis,	
such	as	one	of	the	models	that	are	known	to	have	safe	properties.		For	examples,	see	[9],	[10],	
and	[17].	

99. Provide	a	mechanism	to	preclude	the	abort	of	a	thread	from	another	thread	during	critical	
pieces	of	code.		Some	languages	(for	example,	Ada	or	Real-Time	Java)	provide	a	notion	of	an	
abort-deferred	region.	

100. Provide	a	mechanism	to	signal	another	thread	(or	an	entity	that	can	be	queried	by	other	
threads)	when	a	thread	terminates.	

101. Provide	a	mechanism	that,	within	critical	pieces	of	code,	defers	the	delivery	of	
asynchronous	exceptions	or	asynchronous	transfers	of	control.	

102. Raise	the	level	of	abstraction	for	concurrency	services.	
103. Provide	services	or	mechanisms	to	detect	and	recover	from	protocol	lock	failures.	
104. Design	concurrency	services	that	help	to	avoid	typical	failures	such	as	deadlock.	
105. Ensure	all	format	strings	are	verified	to	be	correct	in	regard	to	the	associated	argument	

or	parameter.	
	
	
	

Complete list of ISO/IEC 24772-1 Implications for Standardization 
contents (these entries are identical to the ones in the previous section, 
and it also contains the complete text of 6.x.6 so that one can see where 
each entry originates): 
	

6.2.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Language	specifiers	should	standardize	on	a	common,	uniform	terminology	to	describe	their	
type	systems	so	that	programmers	experienced	in	other	languages	can	reliably	learn	the	type	system	of	
a	language	that	is	new	to	them.	

•	 Provide	a	mechanism	for	selecting	data	types	with	sufficient	capability	for	the	problem	at	hand.	

•	 Provide	a	way	for	the	computation	to	determine	the	limits	of	the	data	types	actually	selected.	

•	 Language	implementers	should	consider	providing	compiler	switches	or	other	tools	to	provide	
the	highest	possible	degree	of	checking	for	type	errors.	

6.3.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	



•	 For	languages	that	are	commonly	used	for	bit	manipulations,	an	API	(Application	Programming	
Interface)	for	bit	manipulations	that	is	independent	of	word	size	and	machine	instruction	set	should	be	
defined	and	standardized.	

6.4.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	that	do	not	already	adhere	to	or	only	adhere	to	a	subset	of	IEC	60559	[7]	should	
consider	adhering	completely	to	the	standard.		Examples	of	standardization	that	should	be	considered:	

	

•	 Languages	should	consider	providing	a	means	to	generate	diagnostics	for	code	that	attempts	to	
test	equality	of	two	floating	point	values.	

•	 Languages	should	consider	standardizing	their	data	type	to	ISO/IEC	10967-1:1994	and	ISO/IEC	
10967-2:2001.	

6.5.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	that	currently	permit	arithmetic	and	logical	operations	on	enumeration	types	could	
provide	a	mechanism	to	ban	such	operations	program-wide.	

Languages	that	provide	automatic	defaults	or	that	do	not	enforce	static	matching	between	enumerator	
definitions	and	initialization	expressions	could	provide	a	mechanism	to	enforce	such	matching.	

6.6.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	provide	mechanisms	to	prevent	programming	errors	due	to	conversions.	

•	 Languages	should	consider	making	all	type-conversions	explicit	or	at	least	generating	warnings	
for	implicit	conversions	where	loss	of	data	might	occur.	

6.7.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Eliminating	library	calls	that	make	assumptions	about	string	termination	characters.	

•	 Checking	bounds	when	an	array	or	string	is	accessed,	see	C	Bounds	Checking	Library[13].	

Specifying	a	string	construct	that	does	not	need	a	string	termination	character.	

6.8.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	provide	safe	copying	of	arrays	as	built-in	operation.	



•	 Languages	should	consider	only	providing	array	copy	routines	in	libraries	that	perform	checks	on	
the	parameters	to	ensure	that	no	buffer	overrun	can	occur.	

•	 Languages	should	perform	automatic	bounds	checking	on	accesses	to	array	elements,	unless	the	
compiler	can	statically	determine	that	the	check	is	unnecessary.		This	capability	may	need	to	be	optional	
for	performance	reasons.	

•	 Languages	that	use	pointer	types	should	consider	specifying	a	standardized	feature	for	a	pointer	
type	that	would	enable	array	bounds	checking.	

6.9.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	consider	providing	compiler	switches	or	other	tools	to	check	the	size	and	
bounds	of	arrays	and	their	extents	that	are	statically	determinable.	

•	 Languages	should	consider	providing	whole	array	operations	that	may	obviate	the	need	to	
access	individual	elements.	

•	 Languages	should	consider	the	capability	to	generate	exceptions	or	automatically	extend	the	
bounds	of	an	array	to	accommodate	accesses	that	might	otherwise	have	been	beyond	the	bounds.	

6.10.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	consider	only	providing	libraries	that	perform	checks	on	the	parameters	to	
ensure	that	no	buffer	overrun	can	occur.	

•	 Languages	should	consider	providing	full	array	assignment.	

6.11.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	consider	creating	a	mode	that	provides	a	runtime	check	of	the	validity	of	all	
accessed	objects	before	the	object	is	read,	written	or	executed.	

6.12.6	Implications	for	standardization	

•	 	 [None]	

6.13.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 A	language	feature	that	would	check	a	pointer	value	for	NULL	before	performing	an	access	
should	be	considered.	

6.14.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	



•	 Implementations	of	the	free	function	could	tolerate	multiple	frees	on	the	same	
reference/pointer	or	frees	of	memory	that	was	never	allocated.	

•	 Language	specifiers	should	design	generics	in	such	a	way	that	any	attempt	to	instantiate	a	
generic	with	constructs	that	do	not	provide	the	required	capabilities	results	in	a	compile-time	error.	

•	 For	properties	that	cannot	be	checked	at	compile	time,	language	specifiers	should	provide	an	
assertion	mechanism	for	checking	properties	at	run-time.		It	should	be	possible	to	inhibit	assertion	
checking	if	efficiency	is	a	concern.	

•	 A	storage	allocation	interface	should	be	provided	that	will	allow	the	called	function	to	set	the	
pointer	used	to	NULL	after	the	referenced	storage	is	deallocated.	

6.15.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:		

•	 Language	standards	developers	should	consider	providing	facilities	to	specify	either	an	error,	a	
saturated	value,	or	a	modulo	result	when	numeric	overflow	occurs.		Ideally,	the	selection	among	these	
alternatives	could	be	made	by	the	programmer.	

6.16.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:		

•	 Not	providing	logical	shifting	on	arithmetic	values	or	flagging	it	for	reviewers.	

6.17.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	that	do	not	require	declarations	of	names	should	consider	providing	an	option	that	
does	impose	that	requirement.	

6.18.6	Implications	for	standardization		

In	future	standardization	activities,	the	following	items	should	be	considered:		

•	 Languages	should	consider	providing	optional	warning	messages	for	dead	store.		

6.19.6	Implications	for	standardization		

In	future	standardization	activities,	the	following	items	should	be	considered:		

•	 Languages	should	consider	requiring	mandatory	diagnostics	for	unused	variables.		

6.20.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	require	mandatory	diagnostics	for	variables	with	the	same	name	in	nested	
scopes.	



•	 Languages	should	require	mandatory	diagnostics	for	variable	names	that	exceed	the	length	that	
the	implementation	considers	unique.	

•	 Languages	should	consider	requiring	mandatory	diagnostics	for	overloading	or	overriding	of	
keywords	or	standard	library	function	identifiers.	

6.21.6	Implications	for	Standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	not	have	preference	rules	among	mutable	namespaces.	Ambiguities	should	
be	invalid	and	avoidable	by	the	user,	for	example,	by	using	names	qualified	by	their	originating	
namespace.	

6.22.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Some	languages	have	ways	to	determine	if	modules	and	regions	are	elaborated	and	initialized	
and	to	raise	exceptions	if	this	does	not	occur.	Languages	that	do	not,	could	consider	adding	such	
capabilities.		

•	 Languages	could	consider	setting	aside	fields	in	all	objects	to	identify	if	initialization	has	
occurred,	especially	for	security	and	safety	domains.		

•	 Languages	that	do	not	support	whole-object	initialization,	could	consider	adding	this	capability.		

6.23.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Language	definitions	should	avoid	providing	precedence	or	a	particular	associativity	for	
operators	that	are	not	typically	ordered	with	respect	to	one	another	in	arithmetic,	and	instead	require	
full	parenthesization	to	avoid	misinterpretation.	

6.24.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 In	developing	new	or	revised	languages,	give	consideration	to	language	features	that	will	
eliminate	or	mitigate	this	vulnerability,	such	as	pure	functions.	

6.25.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	consider	providing	warnings	for	statements	that	are	unlikely	to	be	right	such	
as	statements	without	side	effects.	A	null	(no-op)	statement	may	need	to	be	added	to	the	language	for	
those	rare	instances	where	an	intentional	null	statement	is	needed.	Having	a	null	statement	as	part	of	
the	language	will	reduce	confusion	as	to	why	a	statement	with	no	side	effects	is	present	in	the	code.	

•	 Languages	should	consider	not	allowing	assignments	used	as	function	parameters.	



•	 Languages	should	consider	not	allowing	assignments	within	a	Boolean	expression.	

•	 Language	definitions	should	avoid	situations	where	easily	confused	symbols	(such	as	=	and	==,	
or	;	and	:,	or	!=	and	/=)	are	valid	in	the	same	context.	For	example,	=	is	not	generally	valid	in	an	if	
statement	in	Java	because	it	does	not	normally	return	a	Boolean	value.		

6.26.6	Implications	for	standardization	

•	 [None]	

6.27.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Language	specifications	could	require	compilers	to	ensure	that	a	complete	set	of	alternatives	is	
provided	in	cases	where	the	value	set	of	the	switch	variable	can	be	statically	determined.	

6.28.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Adding	a	mode	that	strictly	enforces	compound	conditional	and	looping	constructs	with	explicit	
termination,	such	as	“end	if”	or	a	closing	bracket.	

•	 Syntax	for	explicit	termination	of	loops	and	conditional	statements.		

•	 Features	to	terminate	named	loops	and	conditionals	and	determine	if	the	structure	as	named	
matches	the	structure	as	inferred.	

6.29.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Language	designers	should	consider	the	addition	of	an	identifier	type	for	loop	control	that	
cannot	be	modified	by	anything	other	than	the	loop	control	construct.	

6.30.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	provide	encapsulations	for	arrays	that:	

o	 Prevent	the	need	for	the	developer	to	be	concerned	with	explicit	bounds	values.	

o	 Provide	the	developer	with	symbolic	access	to	the	array	start,	end	and	iterators.	

6.31.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	support	and	favor	structured	programming	through	their	constructs	to	the	
extent	possible.	

6.32.6	Implications	for	standardization	



In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Programming	language	specifications	could	provide	labels—such	as	in,	out,	and	inout—that	
control	the	subprogram’s	access	to	its	formal	parameters,	and	enforce	the	access.	

6.33.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Do	not	provide	means	to	obtain	the	address	of	a	locally	declared	entity	as	a	storable	value;	or	

•	 Define	implicit	checks	to	implement	the	assurance	of	enclosed	lifetime	expressed	in	sub-clause	
5	of	this	vulnerability.	Note	that,	in	many	cases,	the	check	is	statically	decidable,	for	example,	when	the	
address	of	a	local	entity	is	taken	as	part	of	a	return	statement	or	expression.			

6.34.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Language	specifiers	could	ensure	that	the	signatures	of	subprograms	match	within	a	single	
compilation	unit	and	could	provide	features	for	asserting	and	checking	the	match	with	externally	
compiled	subprograms.	

6.35.6	Implications	for	standardization	

•	 [None]	

6.36.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 A	standardized	set	of	mechanisms	for	detecting	and	treating	error	conditions	should	be	
developed	so	that	all	languages	to	the	extent	possible	could	use	them.		This	does	not	mean	that	all	
languages	should	use	the	same	mechanisms	as	there	should	be	a	variety,	but	each	of	the	mechanisms	
should	be	standardized.	

6.37.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	consider	providing	a	means	to	perform	fault	handling.		Terminology	and	the	
means	should	be	coordinated	with	other	languages.	

6.38.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Because	the	ability	to	perform	reinterpretation	is	sometimes	necessary,	but	the	need	for	it	is	
rare,	programming	language	designers	might	consider	putting	caution	labels	on	operations	that	permit	
reinterpretation.		For	example,	the	operation	in	Ada	that	permits	unconstrained	reinterpretation	is	
called	Unchecked_Conversion.	



•	 Because	of	the	difficulties	with	undiscriminated	unions,	programming	language	designers	might	
consider	offering	union	types	that	include	distinct	discriminants	with	appropriate	enforcement	of	access	
to	objects.	

6.39.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Provide	means	to	create	abstractions	that	guarantee	deep	copying	where	needed.	

6.40.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	can	provide	syntax	and	semantics	to	guarantee	program-wide	that	dynamic	memory	
is	not	used	(such	as	the	configuration	pragmas	feature	offered	by	some	programming	languages).	

•	 Languages	can	document	or	specify	that	implementations	must	document	choices	for	dynamic	
memory	management	algorithms,	to	hope	designers	decide	on	appropriate	usage	patterns	and	recovery	
techniques	as	necessary	

6.41.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Language	specifiers	should	standardize	on	a	common,	uniform	terminology	to	describe	
generics/templates	so	that	programmers	experienced	in	one	language	can	reliably	learn	and	refer	to	the	
type	system	of	another	language	that	has	the	same	concept,	but	with	a	different	name.	

•	 Language	specifiers	should	design	generics	in	such	a	way	that	any	attempt	to	instantiate	a	
generic	with	constructs	that	do	not	provide	the	required	capabilities	results	in	a	compile-time	error.	

•	 Language	specifiers	should	provide	an	assertion	mechanism	for	checking	properties	at	run-time,	
for	those	properties	that	cannot	be	checked	at	compile	time.		It	should	be	possible	to	inhibit	assertion	
checking	if	efficiency	is	a	concern.	

6.42.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Language	specification	should	include	the	definition	of	a	common	versioning	method.	

•	 Compilers	should	provide	an	option	to	report	the	class	in	which	a	resolved	method	resides.	

•	 Runtime	environments	should	provide	a	trace	of	all	runtime	method	resolutions.	

6.43.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Provide	language	mechanisms	to	formally	specify	preconditions	and	postconditions.	

6.44.6	Implications	for	standardization	



In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Find	a	solution	to	the	problem.	

6.45.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Do	not	allow	unchecked	casts.	

6.46.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Clearly	state	whether	translators	can	extend	the	set	of	intrinsic	procedures	or	not.	

•	 Clearly	state	what	the	precedence	is	for	resolving	collisions.	

•	 Clearly	provide	ways	to	mark	a	procedure	signature	as	being	the	intrinsic	or	an	application	
provided	procedure.	

•	 Require	that	a	diagnostic	is	issued	when	an	application	procedure	matches	the	signature	of	an	
intrinsic	procedure.	

6.47.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Ensure	that	all	library	functions	defined	operate	as	intended	over	the	specified	range	of	input	
values	and	react	in	a	defined	manner	to	values	that	are	outside	the	specified	range.	

•	 Languages	should	define	libraries	that	provide	the	capability	to	validate	parameters	during	
compilation,	during	execution	or	by	static	analysis.	

6.48.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Develop	standard	provisions	for	inter-language	calling	with	languages	most	often	used	with	
their	programming	language.	

6.49.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Provide	a	means	so	that	a	program	can	either	automatically	or	manually	check	that	the	digital	
signature	of	a	library	matches	the	one	in	the	compile/test	environment	

6.50.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Provide	correct	linkage	even	in	the	absence	of	correctly	specified	procedure	signatures.		(Note	
that	this	may	be	very	difficult	where	the	original	source	code	is	unavailable.)	



•	 Provide	specified	means	to	describe	the	signatures	of	subprograms.	

6.51.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 For	languages	that	provide	exceptions,	provide	a	mechanism	for	catching	all	possible	exceptions	
(for	example,	a	‘catch-all’	handler).		The	behaviour	of	the	program	when	encountering	an	unhandled	
exception	should	be	fully	defined.	

•	 Provide	a	mechanism	to	determine	which	exceptions	might	be	thrown	by	a	called	library	
routine.	

6.52.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Reduce	or	eliminate	dependence	on	lexical-level	pre-processors	for	essential	functionality	(such	
as	conditional	compilation).	

•	 Provide	capabilities	to	inline	functions	and	procedure	calls,	to	reduce	the	need	for	pre-processor	
macros.	

6.53.6	Implications	for	standardization	

[None]	

6.54.6	Implications	for	standardization	

[None]	

6.55.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Language	designers	should	consider	removing	or	deprecating	obscure,	difficult	to	understand,	or	
difficult	to	use	features.	

•	 Language	designers	should	provide	language	directives	that	optionally	disable	obscure	language	
features.	

6.56.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Languages	should	minimize	the	amount	of	unspecified	behaviours,	minimize	the	number	of	
possible	behaviours	for	any	given	"unspecified"	choice,	and	document	what	might	be	the	difference	in	
external	effect	associated	with	different	choices.	

6.57.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	



•	 Language	designers	should	minimize	the	amount	of	undefined	behaviour	to	the	extent	possible	
and	practical.	

•	 Language	designers	should	enumerate	all	the	cases	of	undefined	behaviour.	

•	 Language	designers	should	provide	mechanisms	that	permit	the	disabling	or	diagnosing	of	
constructs	that	may	produce	undefined	behaviour.	

6.58.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Portability	guidelines	for	a	specific	language	should	provide	a	list	of	common	implementation-
defined	behaviours.	

•	 Language	specifiers	should	enumerate	all	the	cases	of	implementation-defined	behaviour.	

•	 Language	designers	should	provide	language	directives	that	optionally	disable	obscure	language	
features.	

6.59.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Obscure	language	features	for	which	there	are	commonly	used	alternatives	should	be	
considered	for	removal	from	the	language	standard.	

•	 Obscure	language	features	that	have	routinely	been	found	to	be	the	root	cause	of	safety	or	
security	vulnerabilities,	or	that	are	routinely	disallowed	in	software	guidance	documents	should	be	
considered	for	removal	from	the	language	standard.	

•	 Language	designers	should	provide	language	mechanisms	that	optionally	disable	deprecated	
language	features.	

6.60.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:		

•	 Consider	including	automatic	synchronization	of	thread	initiation	as	part	of	the	concurrency	
model.	

•	 Provide	a	mechanism	permitting	query	of	activation	success.	

6.61.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

•	 Provide	a	mechanism	(either	a	language	mechanism	or	a	service	call)	to	signal	either	another	
thread	or	an	entity	that	can	be	queried	by	other	threads	when	a	thread	terminates.	

6.62.6	Implications	for	standardization	

In	future	standardisation	activities,	the	following	items	should	be	considered:	



•	 Languages	that	do	not	presently	consider	concurrency	should	consider	creating	primitives	that	
let	applications	specify	regions	of	sequential	access	to	data.		Mechanisms	such	as	protected	regions,	
Hoare	monitors	or	synchronous	message	passing	between	threads	result	in	significantly	fewer	resource	
access	mistakes	in	a	program.	

Provide	the	possibility	of	selecting	alternative	concurrency	models	that	support	static	analysis,	such	as	
one	of	the	models	that	are	known	to	have	safe	properties.		For	examples,	see	[9],	[10],	and	[17].	

6.63.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:		

•	 Provide	a	mechanism	to	preclude	the	abort	of	a	thread	from	another	thread	during	critical	
pieces	of	code.		Some	languages	(for	example,	Ada	or	Real-Time	Java)	provide	a	notion	of	an	abort-
deferred	region.	

•	 Provide	a	mechanism	to	signal	another	thread	(or	an	entity	that	can	be	queried	by	other	
threads)	when	a	thread	terminates.	

•	 Provide	a	mechanism	that,	within	critical	pieces	of	code,	defers	the	delivery	of	asynchronous	
exceptions	or	asynchronous	transfers	of	control.	

6.64.6	Implications	for	standardization		

In	future	standardization	activities,	the	following	items	should	be	considered:		

•	 Raise	the	level	of	abstraction	for	concurrency	services.	

•	 Provide	services	or	mechanisms	to	detect	and	recover	from	protocol	lock	failures.	

•	 Design	concurrency	services	that	help	to	avoid	typical	failures	such	as	deadlock.	

6.65.6	Implications	for	standardization		

In	future	standardization	activities,	the	following	items	should	be	considered:		

•	 Ensure	all	format	strings	are	verified	to	be	correct	in	regard	to	the	associated	argument	or	
parameter.	


